Metamath Proof Explorer


Theorem wlkcpr

Description: A walk as class with two components. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 2-Jan-2021)

Ref Expression
Assertion wlkcpr WWalksG1stWWalksG2ndW

Proof

Step Hyp Ref Expression
1 wlkop WWalksGW=1stW2ndW
2 wlkvv 1stWWalksG2ndWWV×V
3 1st2ndb WV×VW=1stW2ndW
4 2 3 sylib 1stWWalksG2ndWW=1stW2ndW
5 eleq1 W=1stW2ndWWWalksG1stW2ndWWalksG
6 df-br 1stWWalksG2ndW1stW2ndWWalksG
7 5 6 bitr4di W=1stW2ndWWWalksG1stWWalksG2ndW
8 1 4 7 pm5.21nii WWalksG1stWWalksG2ndW