Metamath Proof Explorer


Theorem wlkd

Description: Two words representing a walk in a graph. (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses wlkd.p φ P Word V
wlkd.f φ F Word V
wlkd.l φ P = F + 1
wlkd.e φ k 0 ..^ F P k P k + 1 I F k
wlkd.n φ k 0 ..^ F P k P k + 1
wlkd.g φ G W
wlkd.v V = Vtx G
wlkd.i I = iEdg G
wlkd.a φ k 0 F P k V
Assertion wlkd φ F Walks G P

Proof

Step Hyp Ref Expression
1 wlkd.p φ P Word V
2 wlkd.f φ F Word V
3 wlkd.l φ P = F + 1
4 wlkd.e φ k 0 ..^ F P k P k + 1 I F k
5 wlkd.n φ k 0 ..^ F P k P k + 1
6 wlkd.g φ G W
7 wlkd.v V = Vtx G
8 wlkd.i I = iEdg G
9 wlkd.a φ k 0 F P k V
10 1 2 3 4 wlkdlem3 φ F Word dom I
11 1 2 3 9 wlkdlem1 φ P : 0 F V
12 1 2 3 4 5 wlkdlem4 φ k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
13 7 8 iswlk G W F Word V P Word V F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
14 6 2 1 13 syl3anc φ F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
15 10 11 12 14 mpbir3and φ F Walks G P