Database
GRAPH THEORY
Walks, paths and cycles
Walks
wlkdlem1
Next ⟩
wlkdlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
wlkdlem1
Description:
Lemma 1 for
wlkd
.
(Contributed by
AV
, 7-Feb-2021)
Ref
Expression
Hypotheses
wlkd.p
⊢
φ
→
P
∈
Word
V
wlkd.f
⊢
φ
→
F
∈
Word
V
wlkd.l
⊢
φ
→
P
=
F
+
1
wlkdlem1.v
⊢
φ
→
∀
k
∈
0
…
F
P
⁡
k
∈
V
Assertion
wlkdlem1
⊢
φ
→
P
:
0
…
F
⟶
V
Proof
Step
Hyp
Ref
Expression
1
wlkd.p
⊢
φ
→
P
∈
Word
V
2
wlkd.f
⊢
φ
→
F
∈
Word
V
3
wlkd.l
⊢
φ
→
P
=
F
+
1
4
wlkdlem1.v
⊢
φ
→
∀
k
∈
0
…
F
P
⁡
k
∈
V
5
wrdf
⊢
P
∈
Word
V
→
P
:
0
..^
P
⟶
V
6
1
5
syl
⊢
φ
→
P
:
0
..^
P
⟶
V
7
3
oveq2d
⊢
φ
→
0
..^
P
=
0
..^
F
+
1
8
lencl
⊢
F
∈
Word
V
→
F
∈
ℕ
0
9
2
8
syl
⊢
φ
→
F
∈
ℕ
0
10
9
nn0zd
⊢
φ
→
F
∈
ℤ
11
fzval3
⊢
F
∈
ℤ
→
0
…
F
=
0
..^
F
+
1
12
10
11
syl
⊢
φ
→
0
…
F
=
0
..^
F
+
1
13
7
12
eqtr4d
⊢
φ
→
0
..^
P
=
0
…
F
14
13
feq2d
⊢
φ
→
P
:
0
..^
P
⟶
V
↔
P
:
0
…
F
⟶
V
15
ssv
⊢
V
⊆
V
16
frnssb
⊢
V
⊆
V
∧
∀
k
∈
0
…
F
P
⁡
k
∈
V
→
P
:
0
…
F
⟶
V
↔
P
:
0
…
F
⟶
V
17
15
4
16
sylancr
⊢
φ
→
P
:
0
…
F
⟶
V
↔
P
:
0
…
F
⟶
V
18
14
17
bitrd
⊢
φ
→
P
:
0
..^
P
⟶
V
↔
P
:
0
…
F
⟶
V
19
6
18
mpbid
⊢
φ
→
P
:
0
…
F
⟶
V