Metamath Proof Explorer


Theorem wlkdlem1

Description: Lemma 1 for wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses wlkd.p φ P Word V
wlkd.f φ F Word V
wlkd.l φ P = F + 1
wlkdlem1.v φ k 0 F P k V
Assertion wlkdlem1 φ P : 0 F V

Proof

Step Hyp Ref Expression
1 wlkd.p φ P Word V
2 wlkd.f φ F Word V
3 wlkd.l φ P = F + 1
4 wlkdlem1.v φ k 0 F P k V
5 wrdf P Word V P : 0 ..^ P V
6 1 5 syl φ P : 0 ..^ P V
7 3 oveq2d φ 0 ..^ P = 0 ..^ F + 1
8 lencl F Word V F 0
9 2 8 syl φ F 0
10 9 nn0zd φ F
11 fzval3 F 0 F = 0 ..^ F + 1
12 10 11 syl φ 0 F = 0 ..^ F + 1
13 7 12 eqtr4d φ 0 ..^ P = 0 F
14 13 feq2d φ P : 0 ..^ P V P : 0 F V
15 ssv V V
16 frnssb V V k 0 F P k V P : 0 F V P : 0 F V
17 15 4 16 sylancr φ P : 0 F V P : 0 F V
18 14 17 bitrd φ P : 0 ..^ P V P : 0 F V
19 6 18 mpbid φ P : 0 F V