Metamath Proof Explorer


Theorem wlkdlem2

Description: Lemma 2 for wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses wlkd.p φ P Word V
wlkd.f φ F Word V
wlkd.l φ P = F + 1
wlkd.e φ k 0 ..^ F P k P k + 1 I F k
Assertion wlkdlem2 φ F P F I F F 1 k 0 ..^ F P k I F k

Proof

Step Hyp Ref Expression
1 wlkd.p φ P Word V
2 wlkd.f φ F Word V
3 wlkd.l φ P = F + 1
4 wlkd.e φ k 0 ..^ F P k P k + 1 I F k
5 fzo0end F F 1 0 ..^ F
6 fveq2 k = F 1 P k = P F 1
7 fvoveq1 k = F 1 P k + 1 = P F - 1 + 1
8 6 7 preq12d k = F 1 P k P k + 1 = P F 1 P F - 1 + 1
9 2fveq3 k = F 1 I F k = I F F 1
10 8 9 sseq12d k = F 1 P k P k + 1 I F k P F 1 P F - 1 + 1 I F F 1
11 10 rspcv F 1 0 ..^ F k 0 ..^ F P k P k + 1 I F k P F 1 P F - 1 + 1 I F F 1
12 5 11 syl F k 0 ..^ F P k P k + 1 I F k P F 1 P F - 1 + 1 I F F 1
13 fvex P F 1 V
14 fvex P F - 1 + 1 V
15 13 14 prss P F 1 I F F 1 P F - 1 + 1 I F F 1 P F 1 P F - 1 + 1 I F F 1
16 nncn F F
17 npcan1 F F - 1 + 1 = F
18 16 17 syl F F - 1 + 1 = F
19 18 fveq2d F P F - 1 + 1 = P F
20 19 eleq1d F P F - 1 + 1 I F F 1 P F I F F 1
21 20 biimpd F P F - 1 + 1 I F F 1 P F I F F 1
22 21 adantld F P F 1 I F F 1 P F - 1 + 1 I F F 1 P F I F F 1
23 15 22 syl5bir F P F 1 P F - 1 + 1 I F F 1 P F I F F 1
24 12 23 syld F k 0 ..^ F P k P k + 1 I F k P F I F F 1
25 4 24 syl5com φ F P F I F F 1
26 fvex P k V
27 fvex P k + 1 V
28 26 27 prss P k I F k P k + 1 I F k P k P k + 1 I F k
29 simpl P k I F k P k + 1 I F k P k I F k
30 28 29 sylbir P k P k + 1 I F k P k I F k
31 30 a1i φ k 0 ..^ F P k P k + 1 I F k P k I F k
32 31 ralimdva φ k 0 ..^ F P k P k + 1 I F k k 0 ..^ F P k I F k
33 4 32 mpd φ k 0 ..^ F P k I F k
34 25 33 jca φ F P F I F F 1 k 0 ..^ F P k I F k