Metamath Proof Explorer


Theorem wlkdlem4

Description: Lemma 4 for wlkd . (Contributed by Alexander van der Vekens, 1-Feb-2018) (Revised by AV, 23-Jan-2021)

Ref Expression
Hypotheses wlkd.p φ P Word V
wlkd.f φ F Word V
wlkd.l φ P = F + 1
wlkd.e φ k 0 ..^ F P k P k + 1 I F k
wlkd.n φ k 0 ..^ F P k P k + 1
Assertion wlkdlem4 φ k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k

Proof

Step Hyp Ref Expression
1 wlkd.p φ P Word V
2 wlkd.f φ F Word V
3 wlkd.l φ P = F + 1
4 wlkd.e φ k 0 ..^ F P k P k + 1 I F k
5 wlkd.n φ k 0 ..^ F P k P k + 1
6 r19.26 k 0 ..^ F P k P k + 1 I F k P k P k + 1 k 0 ..^ F P k P k + 1 I F k k 0 ..^ F P k P k + 1
7 df-ne P k P k + 1 ¬ P k = P k + 1
8 ifpfal ¬ P k = P k + 1 if- P k = P k + 1 I F k = P k P k P k + 1 I F k P k P k + 1 I F k
9 7 8 sylbi P k P k + 1 if- P k = P k + 1 I F k = P k P k P k + 1 I F k P k P k + 1 I F k
10 9 biimparc P k P k + 1 I F k P k P k + 1 if- P k = P k + 1 I F k = P k P k P k + 1 I F k
11 10 ralimi k 0 ..^ F P k P k + 1 I F k P k P k + 1 k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
12 6 11 sylbir k 0 ..^ F P k P k + 1 I F k k 0 ..^ F P k P k + 1 k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
13 4 5 12 syl2anc φ k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k