Metamath Proof Explorer


Theorem wlkelwrd

Description: The components of a walk are words/functions over a zero based range of integers. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 2-Jan-2021)

Ref Expression
Hypotheses wlkcomp.v V = Vtx G
wlkcomp.i I = iEdg G
wlkcomp.1 F = 1 st W
wlkcomp.2 P = 2 nd W
Assertion wlkelwrd W Walks G F Word dom I P : 0 F V

Proof

Step Hyp Ref Expression
1 wlkcomp.v V = Vtx G
2 wlkcomp.i I = iEdg G
3 wlkcomp.1 F = 1 st W
4 wlkcomp.2 P = 2 nd W
5 1 2 3 4 wlkcompim W Walks G F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
6 3simpa F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k F Word dom I P : 0 F V
7 5 6 syl W Walks G F Word dom I P : 0 F V