Database
GRAPH THEORY
Walks, paths and cycles
Walks
wlkepvtx
Next ⟩
wlkoniswlk
Metamath Proof Explorer
Ascii
Unicode
Theorem
wlkepvtx
Description:
The endpoints of a walk are vertices.
(Contributed by
AV
, 31-Jan-2021)
Ref
Expression
Hypothesis
wlkpvtx.v
⊢
V
=
Vtx
⁡
G
Assertion
wlkepvtx
⊢
F
Walks
⁡
G
P
→
P
⁡
0
∈
V
∧
P
⁡
F
∈
V
Proof
Step
Hyp
Ref
Expression
1
wlkpvtx.v
⊢
V
=
Vtx
⁡
G
2
1
wlkp
⊢
F
Walks
⁡
G
P
→
P
:
0
…
F
⟶
V
3
wlkcl
⊢
F
Walks
⁡
G
P
→
F
∈
ℕ
0
4
0elfz
⊢
F
∈
ℕ
0
→
0
∈
0
…
F
5
ffvelrn
⊢
P
:
0
…
F
⟶
V
∧
0
∈
0
…
F
→
P
⁡
0
∈
V
6
4
5
sylan2
⊢
P
:
0
…
F
⟶
V
∧
F
∈
ℕ
0
→
P
⁡
0
∈
V
7
nn0fz0
⊢
F
∈
ℕ
0
↔
F
∈
0
…
F
8
ffvelrn
⊢
P
:
0
…
F
⟶
V
∧
F
∈
0
…
F
→
P
⁡
F
∈
V
9
7
8
sylan2b
⊢
P
:
0
…
F
⟶
V
∧
F
∈
ℕ
0
→
P
⁡
F
∈
V
10
6
9
jca
⊢
P
:
0
…
F
⟶
V
∧
F
∈
ℕ
0
→
P
⁡
0
∈
V
∧
P
⁡
F
∈
V
11
2
3
10
syl2anc
⊢
F
Walks
⁡
G
P
→
P
⁡
0
∈
V
∧
P
⁡
F
∈
V