Metamath Proof Explorer


Theorem wlkepvtx

Description: The endpoints of a walk are vertices. (Contributed by AV, 31-Jan-2021)

Ref Expression
Hypothesis wlkpvtx.v V = Vtx G
Assertion wlkepvtx F Walks G P P 0 V P F V

Proof

Step Hyp Ref Expression
1 wlkpvtx.v V = Vtx G
2 1 wlkp F Walks G P P : 0 F V
3 wlkcl F Walks G P F 0
4 0elfz F 0 0 0 F
5 ffvelrn P : 0 F V 0 0 F P 0 V
6 4 5 sylan2 P : 0 F V F 0 P 0 V
7 nn0fz0 F 0 F 0 F
8 ffvelrn P : 0 F V F 0 F P F V
9 7 8 sylan2b P : 0 F V F 0 P F V
10 6 9 jca P : 0 F V F 0 P 0 V P F V
11 2 3 10 syl2anc F Walks G P P 0 V P F V