Metamath Proof Explorer


Theorem wlkf

Description: The mapping enumerating the (indices of the) edges of a walk is a word over the indices of the edges of the graph. (Contributed by AV, 5-Apr-2021)

Ref Expression
Hypothesis wlkf.i I = iEdg G
Assertion wlkf F Walks G P F Word dom I

Proof

Step Hyp Ref Expression
1 wlkf.i I = iEdg G
2 eqid Vtx G = Vtx G
3 2 1 wlkprop F Walks G P F Word dom I P : 0 F Vtx G k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
4 3 simp1d F Walks G P F Word dom I