Metamath Proof Explorer


Theorem wlkiswwlks2

Description: A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Assertion wlkiswwlks2 G USHGraph P WWalks G f f Walks G P

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 wwlkbp P WWalks G G V P Word Vtx G
3 eqid Edg G = Edg G
4 1 3 iswwlks P WWalks G P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G
5 ovex 0 ..^ P 1 V
6 mptexg 0 ..^ P 1 V x 0 ..^ P 1 iEdg G -1 P x P x + 1 V
7 5 6 mp1i P P Word Vtx G G V P Word Vtx G G USHGraph x 0 ..^ P 1 iEdg G -1 P x P x + 1 V
8 simprr P P Word Vtx G G V P Word Vtx G G USHGraph G USHGraph
9 simplr P P Word Vtx G G V P Word Vtx G G USHGraph P Word Vtx G
10 hashge1 P Word Vtx G P 1 P
11 10 ancoms P P Word Vtx G 1 P
12 11 adantr P P Word Vtx G G V P Word Vtx G G USHGraph 1 P
13 8 9 12 3jca P P Word Vtx G G V P Word Vtx G G USHGraph G USHGraph P Word Vtx G 1 P
14 13 adantr P P Word Vtx G G V P Word Vtx G G USHGraph f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 G USHGraph P Word Vtx G 1 P
15 edgval Edg G = ran iEdg G
16 15 a1i P P Word Vtx G G V P Word Vtx G G USHGraph f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 Edg G = ran iEdg G
17 16 eleq2d P P Word Vtx G G V P Word Vtx G G USHGraph f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 P i P i + 1 Edg G P i P i + 1 ran iEdg G
18 17 ralbidv P P Word Vtx G G V P Word Vtx G G USHGraph f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 i 0 ..^ P 1 P i P i + 1 Edg G i 0 ..^ P 1 P i P i + 1 ran iEdg G
19 18 biimpd P P Word Vtx G G V P Word Vtx G G USHGraph f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 i 0 ..^ P 1 P i P i + 1 Edg G i 0 ..^ P 1 P i P i + 1 ran iEdg G
20 eqid x 0 ..^ P 1 iEdg G -1 P x P x + 1 = x 0 ..^ P 1 iEdg G -1 P x P x + 1
21 eqid iEdg G = iEdg G
22 20 21 wlkiswwlks2lem6 G USHGraph P Word Vtx G 1 P i 0 ..^ P 1 P i P i + 1 ran iEdg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 Word dom iEdg G P : 0 x 0 ..^ P 1 iEdg G -1 P x P x + 1 Vtx G i 0 ..^ x 0 ..^ P 1 iEdg G -1 P x P x + 1 iEdg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 i = P i P i + 1
23 14 19 22 sylsyld P P Word Vtx G G V P Word Vtx G G USHGraph f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 i 0 ..^ P 1 P i P i + 1 Edg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 Word dom iEdg G P : 0 x 0 ..^ P 1 iEdg G -1 P x P x + 1 Vtx G i 0 ..^ x 0 ..^ P 1 iEdg G -1 P x P x + 1 iEdg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 i = P i P i + 1
24 eleq1 f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 f Word dom iEdg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 Word dom iEdg G
25 fveq2 f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 f = x 0 ..^ P 1 iEdg G -1 P x P x + 1
26 25 oveq2d f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 0 f = 0 x 0 ..^ P 1 iEdg G -1 P x P x + 1
27 26 feq2d f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 P : 0 f Vtx G P : 0 x 0 ..^ P 1 iEdg G -1 P x P x + 1 Vtx G
28 25 oveq2d f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 0 ..^ f = 0 ..^ x 0 ..^ P 1 iEdg G -1 P x P x + 1
29 fveq1 f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 f i = x 0 ..^ P 1 iEdg G -1 P x P x + 1 i
30 29 fveqeq2d f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 iEdg G f i = P i P i + 1 iEdg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 i = P i P i + 1
31 28 30 raleqbidv f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 i 0 ..^ f iEdg G f i = P i P i + 1 i 0 ..^ x 0 ..^ P 1 iEdg G -1 P x P x + 1 iEdg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 i = P i P i + 1
32 24 27 31 3anbi123d f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1 x 0 ..^ P 1 iEdg G -1 P x P x + 1 Word dom iEdg G P : 0 x 0 ..^ P 1 iEdg G -1 P x P x + 1 Vtx G i 0 ..^ x 0 ..^ P 1 iEdg G -1 P x P x + 1 iEdg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 i = P i P i + 1
33 32 imbi2d f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 i 0 ..^ P 1 P i P i + 1 Edg G f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1 i 0 ..^ P 1 P i P i + 1 Edg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 Word dom iEdg G P : 0 x 0 ..^ P 1 iEdg G -1 P x P x + 1 Vtx G i 0 ..^ x 0 ..^ P 1 iEdg G -1 P x P x + 1 iEdg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 i = P i P i + 1
34 33 adantl P P Word Vtx G G V P Word Vtx G G USHGraph f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 i 0 ..^ P 1 P i P i + 1 Edg G f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1 i 0 ..^ P 1 P i P i + 1 Edg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 Word dom iEdg G P : 0 x 0 ..^ P 1 iEdg G -1 P x P x + 1 Vtx G i 0 ..^ x 0 ..^ P 1 iEdg G -1 P x P x + 1 iEdg G x 0 ..^ P 1 iEdg G -1 P x P x + 1 i = P i P i + 1
35 23 34 mpbird P P Word Vtx G G V P Word Vtx G G USHGraph f = x 0 ..^ P 1 iEdg G -1 P x P x + 1 i 0 ..^ P 1 P i P i + 1 Edg G f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
36 7 35 spcimedv P P Word Vtx G G V P Word Vtx G G USHGraph i 0 ..^ P 1 P i P i + 1 Edg G f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
37 36 ex P P Word Vtx G G V P Word Vtx G G USHGraph i 0 ..^ P 1 P i P i + 1 Edg G f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
38 37 com23 P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G V P Word Vtx G G USHGraph f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
39 38 3impia P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G V P Word Vtx G G USHGraph f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
40 39 expd P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G V P Word Vtx G G USHGraph f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
41 40 impcom G V P Word Vtx G P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G USHGraph f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
42 41 imp G V P Word Vtx G P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G USHGraph f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
43 uspgrupgr G USHGraph G UPGraph
44 1 21 upgriswlk G UPGraph f Walks G P f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
45 43 44 syl G USHGraph f Walks G P f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
46 45 adantl G V P Word Vtx G P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G USHGraph f Walks G P f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
47 46 exbidv G V P Word Vtx G P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G USHGraph f f Walks G P f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
48 42 47 mpbird G V P Word Vtx G P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G USHGraph f f Walks G P
49 48 ex G V P Word Vtx G P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G USHGraph f f Walks G P
50 49 ex G V P Word Vtx G P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G USHGraph f f Walks G P
51 4 50 syl5bi G V P Word Vtx G P WWalks G G USHGraph f f Walks G P
52 2 51 mpcom P WWalks G G USHGraph f f Walks G P
53 52 com12 G USHGraph P WWalks G f f Walks G P