Database
GRAPH THEORY
Walks, paths and cycles
Walks as words
wlkiswwlks2lem1
Next ⟩
wlkiswwlks2lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
wlkiswwlks2lem1
Description:
Lemma 1 for
wlkiswwlks2
.
(Contributed by
Alexander van der Vekens
, 20-Jul-2018)
Ref
Expression
Hypothesis
wlkiswwlks2lem.f
⊢
F
=
x
∈
0
..^
P
−
1
⟼
E
-1
⁡
P
⁡
x
P
⁡
x
+
1
Assertion
wlkiswwlks2lem1
⊢
P
∈
Word
V
∧
1
≤
P
→
F
=
P
−
1
Proof
Step
Hyp
Ref
Expression
1
wlkiswwlks2lem.f
⊢
F
=
x
∈
0
..^
P
−
1
⟼
E
-1
⁡
P
⁡
x
P
⁡
x
+
1
2
lencl
⊢
P
∈
Word
V
→
P
∈
ℕ
0
3
elnnnn0c
⊢
P
∈
ℕ
↔
P
∈
ℕ
0
∧
1
≤
P
4
3
biimpri
⊢
P
∈
ℕ
0
∧
1
≤
P
→
P
∈
ℕ
5
2
4
sylan
⊢
P
∈
Word
V
∧
1
≤
P
→
P
∈
ℕ
6
nnm1nn0
⊢
P
∈
ℕ
→
P
−
1
∈
ℕ
0
7
5
6
syl
⊢
P
∈
Word
V
∧
1
≤
P
→
P
−
1
∈
ℕ
0
8
fvex
⊢
E
-1
⁡
P
⁡
x
P
⁡
x
+
1
∈
V
9
8
1
fnmpti
⊢
F
Fn
0
..^
P
−
1
10
ffzo0hash
⊢
P
−
1
∈
ℕ
0
∧
F
Fn
0
..^
P
−
1
→
F
=
P
−
1
11
7
9
10
sylancl
⊢
P
∈
Word
V
∧
1
≤
P
→
F
=
P
−
1