Metamath Proof Explorer


Theorem wlkiswwlks2lem1

Description: Lemma 1 for wlkiswwlks2 . (Contributed by Alexander van der Vekens, 20-Jul-2018)

Ref Expression
Hypothesis wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
Assertion wlkiswwlks2lem1 P Word V 1 P F = P 1

Proof

Step Hyp Ref Expression
1 wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
2 lencl P Word V P 0
3 elnnnn0c P P 0 1 P
4 3 biimpri P 0 1 P P
5 2 4 sylan P Word V 1 P P
6 nnm1nn0 P P 1 0
7 5 6 syl P Word V 1 P P 1 0
8 fvex E -1 P x P x + 1 V
9 8 1 fnmpti F Fn 0 ..^ P 1
10 ffzo0hash P 1 0 F Fn 0 ..^ P 1 F = P 1
11 7 9 10 sylancl P Word V 1 P F = P 1