Database
GRAPH THEORY
Walks, paths and cycles
Walks as words
wlkiswwlks2lem2
Next ⟩
wlkiswwlks2lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
wlkiswwlks2lem2
Description:
Lemma 2 for
wlkiswwlks2
.
(Contributed by
Alexander van der Vekens
, 20-Jul-2018)
Ref
Expression
Hypothesis
wlkiswwlks2lem.f
⊢
F
=
x
∈
0
..^
P
−
1
⟼
E
-1
⁡
P
⁡
x
P
⁡
x
+
1
Assertion
wlkiswwlks2lem2
⊢
P
∈
ℕ
0
∧
I
∈
0
..^
P
−
1
→
F
⁡
I
=
E
-1
⁡
P
⁡
I
P
⁡
I
+
1
Proof
Step
Hyp
Ref
Expression
1
wlkiswwlks2lem.f
⊢
F
=
x
∈
0
..^
P
−
1
⟼
E
-1
⁡
P
⁡
x
P
⁡
x
+
1
2
fveq2
⊢
x
=
I
→
P
⁡
x
=
P
⁡
I
3
fvoveq1
⊢
x
=
I
→
P
⁡
x
+
1
=
P
⁡
I
+
1
4
2
3
preq12d
⊢
x
=
I
→
P
⁡
x
P
⁡
x
+
1
=
P
⁡
I
P
⁡
I
+
1
5
4
fveq2d
⊢
x
=
I
→
E
-1
⁡
P
⁡
x
P
⁡
x
+
1
=
E
-1
⁡
P
⁡
I
P
⁡
I
+
1
6
simpr
⊢
P
∈
ℕ
0
∧
I
∈
0
..^
P
−
1
→
I
∈
0
..^
P
−
1
7
fvexd
⊢
P
∈
ℕ
0
∧
I
∈
0
..^
P
−
1
→
E
-1
⁡
P
⁡
I
P
⁡
I
+
1
∈
V
8
1
5
6
7
fvmptd3
⊢
P
∈
ℕ
0
∧
I
∈
0
..^
P
−
1
→
F
⁡
I
=
E
-1
⁡
P
⁡
I
P
⁡
I
+
1