Metamath Proof Explorer


Theorem wlkiswwlks2lem2

Description: Lemma 2 for wlkiswwlks2 . (Contributed by Alexander van der Vekens, 20-Jul-2018)

Ref Expression
Hypothesis wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
Assertion wlkiswwlks2lem2 P 0 I 0 ..^ P 1 F I = E -1 P I P I + 1

Proof

Step Hyp Ref Expression
1 wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
2 fveq2 x = I P x = P I
3 fvoveq1 x = I P x + 1 = P I + 1
4 2 3 preq12d x = I P x P x + 1 = P I P I + 1
5 4 fveq2d x = I E -1 P x P x + 1 = E -1 P I P I + 1
6 simpr P 0 I 0 ..^ P 1 I 0 ..^ P 1
7 fvexd P 0 I 0 ..^ P 1 E -1 P I P I + 1 V
8 1 5 6 7 fvmptd3 P 0 I 0 ..^ P 1 F I = E -1 P I P I + 1