Metamath Proof Explorer


Theorem wlkiswwlks2lem3

Description: Lemma 3 for wlkiswwlks2 . (Contributed by Alexander van der Vekens, 20-Jul-2018)

Ref Expression
Hypothesis wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
Assertion wlkiswwlks2lem3 P Word V 1 P P : 0 F V

Proof

Step Hyp Ref Expression
1 wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
2 1 wlkiswwlks2lem1 P Word V 1 P F = P 1
3 wrdf P Word V P : 0 ..^ P V
4 lencl P Word V P 0
5 nn0z P 0 P
6 fzoval P 0 ..^ P = 0 P 1
7 5 6 syl P 0 0 ..^ P = 0 P 1
8 oveq2 P 1 = F 0 P 1 = 0 F
9 8 eqcoms F = P 1 0 P 1 = 0 F
10 7 9 sylan9eq P 0 F = P 1 0 ..^ P = 0 F
11 10 feq2d P 0 F = P 1 P : 0 ..^ P V P : 0 F V
12 11 biimpcd P : 0 ..^ P V P 0 F = P 1 P : 0 F V
13 12 expd P : 0 ..^ P V P 0 F = P 1 P : 0 F V
14 3 4 13 sylc P Word V F = P 1 P : 0 F V
15 14 adantr P Word V 1 P F = P 1 P : 0 F V
16 2 15 mpd P Word V 1 P P : 0 F V