Database
GRAPH THEORY
Walks, paths and cycles
Walks as words
wlkiswwlks2lem3
Next ⟩
wlkiswwlks2lem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
wlkiswwlks2lem3
Description:
Lemma 3 for
wlkiswwlks2
.
(Contributed by
Alexander van der Vekens
, 20-Jul-2018)
Ref
Expression
Hypothesis
wlkiswwlks2lem.f
⊢
F
=
x
∈
0
..^
P
−
1
⟼
E
-1
⁡
P
⁡
x
P
⁡
x
+
1
Assertion
wlkiswwlks2lem3
⊢
P
∈
Word
V
∧
1
≤
P
→
P
:
0
…
F
⟶
V
Proof
Step
Hyp
Ref
Expression
1
wlkiswwlks2lem.f
⊢
F
=
x
∈
0
..^
P
−
1
⟼
E
-1
⁡
P
⁡
x
P
⁡
x
+
1
2
1
wlkiswwlks2lem1
⊢
P
∈
Word
V
∧
1
≤
P
→
F
=
P
−
1
3
wrdf
⊢
P
∈
Word
V
→
P
:
0
..^
P
⟶
V
4
lencl
⊢
P
∈
Word
V
→
P
∈
ℕ
0
5
nn0z
⊢
P
∈
ℕ
0
→
P
∈
ℤ
6
fzoval
⊢
P
∈
ℤ
→
0
..^
P
=
0
…
P
−
1
7
5
6
syl
⊢
P
∈
ℕ
0
→
0
..^
P
=
0
…
P
−
1
8
oveq2
⊢
P
−
1
=
F
→
0
…
P
−
1
=
0
…
F
9
8
eqcoms
⊢
F
=
P
−
1
→
0
…
P
−
1
=
0
…
F
10
7
9
sylan9eq
⊢
P
∈
ℕ
0
∧
F
=
P
−
1
→
0
..^
P
=
0
…
F
11
10
feq2d
⊢
P
∈
ℕ
0
∧
F
=
P
−
1
→
P
:
0
..^
P
⟶
V
↔
P
:
0
…
F
⟶
V
12
11
biimpcd
⊢
P
:
0
..^
P
⟶
V
→
P
∈
ℕ
0
∧
F
=
P
−
1
→
P
:
0
…
F
⟶
V
13
12
expd
⊢
P
:
0
..^
P
⟶
V
→
P
∈
ℕ
0
→
F
=
P
−
1
→
P
:
0
…
F
⟶
V
14
3
4
13
sylc
⊢
P
∈
Word
V
→
F
=
P
−
1
→
P
:
0
…
F
⟶
V
15
14
adantr
⊢
P
∈
Word
V
∧
1
≤
P
→
F
=
P
−
1
→
P
:
0
…
F
⟶
V
16
2
15
mpd
⊢
P
∈
Word
V
∧
1
≤
P
→
P
:
0
…
F
⟶
V