Metamath Proof Explorer


Theorem wlkiswwlks2lem4

Description: Lemma 4 for wlkiswwlks2 . (Contributed by Alexander van der Vekens, 20-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Hypotheses wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
wlkiswwlks2lem.e E = iEdg G
Assertion wlkiswwlks2lem4 G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E i 0 ..^ F E F i = P i P i + 1

Proof

Step Hyp Ref Expression
1 wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
2 wlkiswwlks2lem.e E = iEdg G
3 1 wlkiswwlks2lem1 P Word V 1 P F = P 1
4 3 3adant1 G USHGraph P Word V 1 P F = P 1
5 lencl P Word V P 0
6 5 3ad2ant2 G USHGraph P Word V 1 P P 0
7 1 wlkiswwlks2lem2 P 0 i 0 ..^ P 1 F i = E -1 P i P i + 1
8 6 7 sylan G USHGraph P Word V 1 P i 0 ..^ P 1 F i = E -1 P i P i + 1
9 8 adantr G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E F i = E -1 P i P i + 1
10 9 fveq2d G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E E F i = E E -1 P i P i + 1
11 2 uspgrf1oedg G USHGraph E : dom E 1-1 onto Edg G
12 2 rneqi ran E = ran iEdg G
13 edgval Edg G = ran iEdg G
14 12 13 eqtr4i ran E = Edg G
15 f1oeq3 ran E = Edg G E : dom E 1-1 onto ran E E : dom E 1-1 onto Edg G
16 14 15 ax-mp E : dom E 1-1 onto ran E E : dom E 1-1 onto Edg G
17 11 16 sylibr G USHGraph E : dom E 1-1 onto ran E
18 17 3ad2ant1 G USHGraph P Word V 1 P E : dom E 1-1 onto ran E
19 18 adantr G USHGraph P Word V 1 P i 0 ..^ P 1 E : dom E 1-1 onto ran E
20 f1ocnvfv2 E : dom E 1-1 onto ran E P i P i + 1 ran E E E -1 P i P i + 1 = P i P i + 1
21 19 20 sylan G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E E E -1 P i P i + 1 = P i P i + 1
22 10 21 eqtrd G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E E F i = P i P i + 1
23 22 ex G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E E F i = P i P i + 1
24 23 ralimdva G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E i 0 ..^ P 1 E F i = P i P i + 1
25 oveq2 F = P 1 0 ..^ F = 0 ..^ P 1
26 25 raleqdv F = P 1 i 0 ..^ F E F i = P i P i + 1 i 0 ..^ P 1 E F i = P i P i + 1
27 26 imbi2d F = P 1 i 0 ..^ P 1 P i P i + 1 ran E i 0 ..^ F E F i = P i P i + 1 i 0 ..^ P 1 P i P i + 1 ran E i 0 ..^ P 1 E F i = P i P i + 1
28 24 27 syl5ibr F = P 1 G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E i 0 ..^ F E F i = P i P i + 1
29 4 28 mpcom G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E i 0 ..^ F E F i = P i P i + 1