Metamath Proof Explorer


Theorem wlkiswwlks2lem5

Description: Lemma 5 for wlkiswwlks2 . (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Hypotheses wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
wlkiswwlks2lem.e E = iEdg G
Assertion wlkiswwlks2lem5 G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E F Word dom E

Proof

Step Hyp Ref Expression
1 wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
2 wlkiswwlks2lem.e E = iEdg G
3 2 uspgrf1oedg G USHGraph E : dom E 1-1 onto Edg G
4 2 rneqi ran E = ran iEdg G
5 edgval Edg G = ran iEdg G
6 4 5 eqtr4i ran E = Edg G
7 6 a1i G USHGraph ran E = Edg G
8 7 f1oeq3d G USHGraph E : dom E 1-1 onto ran E E : dom E 1-1 onto Edg G
9 3 8 mpbird G USHGraph E : dom E 1-1 onto ran E
10 9 3ad2ant1 G USHGraph P Word V 1 P E : dom E 1-1 onto ran E
11 10 ad2antrr G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E x 0 ..^ P 1 E : dom E 1-1 onto ran E
12 simpr G USHGraph P Word V 1 P x 0 ..^ P 1 x 0 ..^ P 1
13 fveq2 i = x P i = P x
14 fvoveq1 i = x P i + 1 = P x + 1
15 13 14 preq12d i = x P i P i + 1 = P x P x + 1
16 15 eleq1d i = x P i P i + 1 ran E P x P x + 1 ran E
17 16 adantl G USHGraph P Word V 1 P x 0 ..^ P 1 i = x P i P i + 1 ran E P x P x + 1 ran E
18 12 17 rspcdv G USHGraph P Word V 1 P x 0 ..^ P 1 i 0 ..^ P 1 P i P i + 1 ran E P x P x + 1 ran E
19 18 impancom G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E x 0 ..^ P 1 P x P x + 1 ran E
20 19 imp G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E x 0 ..^ P 1 P x P x + 1 ran E
21 f1ocnvdm E : dom E 1-1 onto ran E P x P x + 1 ran E E -1 P x P x + 1 dom E
22 11 20 21 syl2anc G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E x 0 ..^ P 1 E -1 P x P x + 1 dom E
23 22 1 fmptd G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E F : 0 ..^ P 1 dom E
24 iswrdi F : 0 ..^ P 1 dom E F Word dom E
25 23 24 syl G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E F Word dom E
26 25 ex G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E F Word dom E