Metamath Proof Explorer


Theorem wlkiswwlksupgr2

Description: A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 does not require G to be a simple pseudograph, but it requires the Axiom of Choice ( ac6 ) for its proof. Notice that only the existence of a function f can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 ). (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Assertion wlkiswwlksupgr2 G UPGraph P WWalks G f f Walks G P

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Edg G = Edg G
3 1 2 iswwlks P WWalks G P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G
4 edgval Edg G = ran iEdg G
5 4 eleq2i P i P i + 1 Edg G P i P i + 1 ran iEdg G
6 upgruhgr G UPGraph G UHGraph
7 eqid iEdg G = iEdg G
8 7 uhgrfun G UHGraph Fun iEdg G
9 6 8 syl G UPGraph Fun iEdg G
10 9 adantl P P Word Vtx G G UPGraph Fun iEdg G
11 elrnrexdm Fun iEdg G P i P i + 1 ran iEdg G x dom iEdg G P i P i + 1 = iEdg G x
12 eqcom iEdg G x = P i P i + 1 P i P i + 1 = iEdg G x
13 12 rexbii x dom iEdg G iEdg G x = P i P i + 1 x dom iEdg G P i P i + 1 = iEdg G x
14 11 13 syl6ibr Fun iEdg G P i P i + 1 ran iEdg G x dom iEdg G iEdg G x = P i P i + 1
15 10 14 syl P P Word Vtx G G UPGraph P i P i + 1 ran iEdg G x dom iEdg G iEdg G x = P i P i + 1
16 5 15 syl5bi P P Word Vtx G G UPGraph P i P i + 1 Edg G x dom iEdg G iEdg G x = P i P i + 1
17 16 ralimdv P P Word Vtx G G UPGraph i 0 ..^ P 1 P i P i + 1 Edg G i 0 ..^ P 1 x dom iEdg G iEdg G x = P i P i + 1
18 17 ex P P Word Vtx G G UPGraph i 0 ..^ P 1 P i P i + 1 Edg G i 0 ..^ P 1 x dom iEdg G iEdg G x = P i P i + 1
19 18 com23 P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G UPGraph i 0 ..^ P 1 x dom iEdg G iEdg G x = P i P i + 1
20 19 3impia P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G G UPGraph i 0 ..^ P 1 x dom iEdg G iEdg G x = P i P i + 1
21 20 impcom G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G i 0 ..^ P 1 x dom iEdg G iEdg G x = P i P i + 1
22 ovex 0 ..^ P 1 V
23 fvex iEdg G V
24 23 dmex dom iEdg G V
25 fveqeq2 x = f i iEdg G x = P i P i + 1 iEdg G f i = P i P i + 1
26 22 24 25 ac6 i 0 ..^ P 1 x dom iEdg G iEdg G x = P i P i + 1 f f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1
27 21 26 syl G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1
28 iswrdi f : 0 ..^ P 1 dom iEdg G f Word dom iEdg G
29 28 adantr f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 f Word dom iEdg G
30 29 adantl G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 f Word dom iEdg G
31 len0nnbi P Word Vtx G P P
32 31 biimpac P P Word Vtx G P
33 wrdf P Word Vtx G P : 0 ..^ P Vtx G
34 nnz P P
35 fzoval P 0 ..^ P = 0 P 1
36 34 35 syl P 0 ..^ P = 0 P 1
37 36 adantr P f : 0 ..^ P 1 dom iEdg G 0 ..^ P = 0 P 1
38 nnm1nn0 P P 1 0
39 fnfzo0hash P 1 0 f : 0 ..^ P 1 dom iEdg G f = P 1
40 38 39 sylan P f : 0 ..^ P 1 dom iEdg G f = P 1
41 40 eqcomd P f : 0 ..^ P 1 dom iEdg G P 1 = f
42 41 oveq2d P f : 0 ..^ P 1 dom iEdg G 0 P 1 = 0 f
43 37 42 eqtrd P f : 0 ..^ P 1 dom iEdg G 0 ..^ P = 0 f
44 43 feq2d P f : 0 ..^ P 1 dom iEdg G P : 0 ..^ P Vtx G P : 0 f Vtx G
45 44 biimpcd P : 0 ..^ P Vtx G P f : 0 ..^ P 1 dom iEdg G P : 0 f Vtx G
46 45 expd P : 0 ..^ P Vtx G P f : 0 ..^ P 1 dom iEdg G P : 0 f Vtx G
47 33 46 syl P Word Vtx G P f : 0 ..^ P 1 dom iEdg G P : 0 f Vtx G
48 47 adantl P P Word Vtx G P f : 0 ..^ P 1 dom iEdg G P : 0 f Vtx G
49 32 48 mpd P P Word Vtx G f : 0 ..^ P 1 dom iEdg G P : 0 f Vtx G
50 49 3adant3 P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G P : 0 f Vtx G
51 50 adantl G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G P : 0 f Vtx G
52 51 com12 f : 0 ..^ P 1 dom iEdg G G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G P : 0 f Vtx G
53 52 adantr f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G P : 0 f Vtx G
54 53 impcom G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 P : 0 f Vtx G
55 simpr G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 i 0 ..^ P 1 iEdg G f i = P i P i + 1
56 32 40 sylan P P Word Vtx G f : 0 ..^ P 1 dom iEdg G f = P 1
57 56 oveq2d P P Word Vtx G f : 0 ..^ P 1 dom iEdg G 0 ..^ f = 0 ..^ P 1
58 57 ex P P Word Vtx G f : 0 ..^ P 1 dom iEdg G 0 ..^ f = 0 ..^ P 1
59 58 3adant3 P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G 0 ..^ f = 0 ..^ P 1
60 59 adantl G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G 0 ..^ f = 0 ..^ P 1
61 60 imp G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G 0 ..^ f = 0 ..^ P 1
62 61 adantr G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 0 ..^ f = 0 ..^ P 1
63 62 raleqdv G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 i 0 ..^ f iEdg G f i = P i P i + 1 i 0 ..^ P 1 iEdg G f i = P i P i + 1
64 55 63 mpbird G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 i 0 ..^ f iEdg G f i = P i P i + 1
65 64 anasss G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 i 0 ..^ f iEdg G f i = P i P i + 1
66 30 54 65 3jca G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
67 66 ex G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
68 67 eximdv G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f f : 0 ..^ P 1 dom iEdg G i 0 ..^ P 1 iEdg G f i = P i P i + 1 f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
69 27 68 mpd G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
70 1 7 upgriswlk G UPGraph f Walks G P f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
71 70 adantr G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f Walks G P f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
72 71 exbidv G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f f Walks G P f f Word dom iEdg G P : 0 f Vtx G i 0 ..^ f iEdg G f i = P i P i + 1
73 69 72 mpbird G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f f Walks G P
74 73 ex G UPGraph P P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G f f Walks G P
75 3 74 syl5bi G UPGraph P WWalks G f f Walks G P