Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
1 2
|
iswwlks |
|
4 |
|
edgval |
|
5 |
4
|
eleq2i |
|
6 |
|
upgruhgr |
|
7 |
|
eqid |
|
8 |
7
|
uhgrfun |
|
9 |
6 8
|
syl |
|
10 |
9
|
adantl |
|
11 |
|
elrnrexdm |
|
12 |
|
eqcom |
|
13 |
12
|
rexbii |
|
14 |
11 13
|
syl6ibr |
|
15 |
10 14
|
syl |
|
16 |
5 15
|
syl5bi |
|
17 |
16
|
ralimdv |
|
18 |
17
|
ex |
|
19 |
18
|
com23 |
|
20 |
19
|
3impia |
|
21 |
20
|
impcom |
|
22 |
|
ovex |
|
23 |
|
fvex |
|
24 |
23
|
dmex |
|
25 |
|
fveqeq2 |
|
26 |
22 24 25
|
ac6 |
|
27 |
21 26
|
syl |
|
28 |
|
iswrdi |
|
29 |
28
|
adantr |
|
30 |
29
|
adantl |
|
31 |
|
len0nnbi |
|
32 |
31
|
biimpac |
|
33 |
|
wrdf |
|
34 |
|
nnz |
|
35 |
|
fzoval |
|
36 |
34 35
|
syl |
|
37 |
36
|
adantr |
|
38 |
|
nnm1nn0 |
|
39 |
|
fnfzo0hash |
|
40 |
38 39
|
sylan |
|
41 |
40
|
eqcomd |
|
42 |
41
|
oveq2d |
|
43 |
37 42
|
eqtrd |
|
44 |
43
|
feq2d |
|
45 |
44
|
biimpcd |
|
46 |
45
|
expd |
|
47 |
33 46
|
syl |
|
48 |
47
|
adantl |
|
49 |
32 48
|
mpd |
|
50 |
49
|
3adant3 |
|
51 |
50
|
adantl |
|
52 |
51
|
com12 |
|
53 |
52
|
adantr |
|
54 |
53
|
impcom |
|
55 |
|
simpr |
|
56 |
32 40
|
sylan |
|
57 |
56
|
oveq2d |
|
58 |
57
|
ex |
|
59 |
58
|
3adant3 |
|
60 |
59
|
adantl |
|
61 |
60
|
imp |
|
62 |
61
|
adantr |
|
63 |
62
|
raleqdv |
|
64 |
55 63
|
mpbird |
|
65 |
64
|
anasss |
|
66 |
30 54 65
|
3jca |
|
67 |
66
|
ex |
|
68 |
67
|
eximdv |
|
69 |
27 68
|
mpd |
|
70 |
1 7
|
upgriswlk |
|
71 |
70
|
adantr |
|
72 |
71
|
exbidv |
|
73 |
69 72
|
mpbird |
|
74 |
73
|
ex |
|
75 |
3 74
|
syl5bi |
|