| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlknon2num.v |
|
| 2 |
|
clwlkwlk |
|
| 3 |
|
wlkop |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
fvex |
|
| 6 |
|
hasheq0 |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
7
|
biimpi |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
3ad2ant3 |
|
| 11 |
9
|
adantl |
|
| 12 |
11
|
breq1d |
|
| 13 |
1
|
1vgrex |
|
| 14 |
1
|
0clwlk |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
adantr |
|
| 17 |
12 16
|
bitrd |
|
| 18 |
|
fz0sn |
|
| 19 |
18
|
feq2i |
|
| 20 |
|
c0ex |
|
| 21 |
20
|
fsn2 |
|
| 22 |
|
simprr |
|
| 23 |
|
simprr |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
opeq2d |
|
| 26 |
25
|
sneqd |
|
| 27 |
22 26
|
eqtrd |
|
| 28 |
27
|
ex |
|
| 29 |
21 28
|
biimtrid |
|
| 30 |
19 29
|
biimtrid |
|
| 31 |
17 30
|
sylbid |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
com23 |
|
| 34 |
33
|
3imp |
|
| 35 |
10 34
|
opeq12d |
|
| 36 |
35
|
3exp |
|
| 37 |
|
eleq1 |
|
| 38 |
|
df-br |
|
| 39 |
37 38
|
bitr4di |
|
| 40 |
|
eqeq1 |
|
| 41 |
40
|
imbi2d |
|
| 42 |
39 41
|
imbi12d |
|
| 43 |
36 42
|
imbitrrid |
|
| 44 |
43
|
com23 |
|
| 45 |
4 44
|
mpcom |
|
| 46 |
45
|
com12 |
|
| 47 |
46
|
impd |
|
| 48 |
|
eqidd |
|
| 49 |
20
|
a1i |
|
| 50 |
|
snidg |
|
| 51 |
49 50
|
fsnd |
|
| 52 |
1
|
0clwlkv |
|
| 53 |
48 51 52
|
mpd3an23 |
|
| 54 |
|
hash0 |
|
| 55 |
54
|
a1i |
|
| 56 |
|
fvsng |
|
| 57 |
20 56
|
mpan |
|
| 58 |
53 55 57
|
jca32 |
|
| 59 |
|
eleq1 |
|
| 60 |
|
df-br |
|
| 61 |
59 60
|
bitr4di |
|
| 62 |
|
0ex |
|
| 63 |
|
snex |
|
| 64 |
62 63
|
op1std |
|
| 65 |
64
|
fveqeq2d |
|
| 66 |
62 63
|
op2ndd |
|
| 67 |
66
|
fveq1d |
|
| 68 |
67
|
eqeq1d |
|
| 69 |
65 68
|
anbi12d |
|
| 70 |
61 69
|
anbi12d |
|
| 71 |
58 70
|
syl5ibrcom |
|
| 72 |
47 71
|
impbid |
|
| 73 |
72
|
alrimiv |
|
| 74 |
|
rabeqsn |
|
| 75 |
73 74
|
sylibr |
|