| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkv |  | 
						
							| 2 |  | simp3l |  | 
						
							| 3 |  | simp2 |  | 
						
							| 4 |  | c0ex |  | 
						
							| 5 | 4 | snid |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 |  | fzo01 |  | 
						
							| 8 | 6 7 | eqtrdi |  | 
						
							| 9 | 5 8 | eleqtrrid |  | 
						
							| 10 | 9 | ad2antrl |  | 
						
							| 11 | 10 | 3ad2ant3 |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 12 | iedginwlk |  | 
						
							| 14 | 2 3 11 13 | syl3anc |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 12 | iswlkg |  | 
						
							| 17 | 8 | raleqdv |  | 
						
							| 18 |  | oveq1 |  | 
						
							| 19 |  | 0p1e1 |  | 
						
							| 20 | 18 19 | eqtrdi |  | 
						
							| 21 |  | wkslem2 |  | 
						
							| 22 | 20 21 | mpdan |  | 
						
							| 23 | 4 22 | ralsn |  | 
						
							| 24 | 17 23 | bitrdi |  | 
						
							| 25 | 24 | ad2antrl |  | 
						
							| 26 |  | ifptru |  | 
						
							| 27 | 26 | biimpa |  | 
						
							| 28 | 27 | eqcomd |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 29 | ad2antll |  | 
						
							| 31 | 25 30 | sylbid |  | 
						
							| 32 | 31 | com12 |  | 
						
							| 33 | 32 | 3ad2ant3 |  | 
						
							| 34 | 16 33 | biimtrdi |  | 
						
							| 35 | 34 | 3imp |  | 
						
							| 36 |  | edgval |  | 
						
							| 37 | 36 | a1i |  | 
						
							| 38 | 14 35 37 | 3eltr4d |  | 
						
							| 39 | 38 | 3exp |  | 
						
							| 40 | 39 | 3ad2ant1 |  | 
						
							| 41 | 1 40 | mpcom |  | 
						
							| 42 | 41 | expd |  | 
						
							| 43 | 42 | impcom |  | 
						
							| 44 | 43 | imp |  |