Step |
Hyp |
Ref |
Expression |
1 |
|
wlklnwwlkln2lem.1 |
|
2 |
|
eqid |
|
3 |
2
|
wwlknbp |
|
4 |
|
iswwlksn |
|
5 |
4
|
adantr |
|
6 |
|
lencl |
|
7 |
6
|
nn0cnd |
|
8 |
7
|
adantl |
|
9 |
|
1cnd |
|
10 |
|
nn0cn |
|
11 |
10
|
adantr |
|
12 |
8 9 11
|
subadd2d |
|
13 |
|
eqcom |
|
14 |
12 13
|
bitr2di |
|
15 |
14
|
biimpcd |
|
16 |
15
|
adantl |
|
17 |
16
|
impcom |
|
18 |
1
|
com12 |
|
19 |
18
|
adantr |
|
20 |
19
|
adantl |
|
21 |
20
|
imp |
|
22 |
|
simpr |
|
23 |
|
wlklenvm1 |
|
24 |
22 23
|
jccir |
|
25 |
24
|
ex |
|
26 |
25
|
eximdv |
|
27 |
21 26
|
mpd |
|
28 |
|
eqeq2 |
|
29 |
28
|
anbi2d |
|
30 |
29
|
exbidv |
|
31 |
27 30
|
syl5ib |
|
32 |
31
|
expd |
|
33 |
17 32
|
mpcom |
|
34 |
33
|
ex |
|
35 |
5 34
|
sylbid |
|
36 |
35
|
3adant1 |
|
37 |
3 36
|
mpcom |
|
38 |
37
|
com12 |
|