Metamath Proof Explorer


Theorem wlkn0

Description: The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018) (Revised by AV, 2-Jan-2021)

Ref Expression
Assertion wlkn0 F Walks G P P

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 wlkp F Walks G P P : 0 F Vtx G
3 fdm P : 0 F Vtx G dom P = 0 F
4 3 eqcomd P : 0 F Vtx G 0 F = dom P
5 2 4 syl F Walks G P 0 F = dom P
6 wlkcl F Walks G P F 0
7 elnn0uz F 0 F 0
8 fzn0 0 F F 0
9 7 8 sylbb2 F 0 0 F
10 6 9 syl F Walks G P 0 F
11 5 10 eqnetrrd F Walks G P dom P
12 frel P : 0 F Vtx G Rel P
13 2 12 syl F Walks G P Rel P
14 reldm0 Rel P P = dom P =
15 14 necon3bid Rel P P dom P
16 13 15 syl F Walks G P P dom P
17 11 16 mpbird F Walks G P P