Metamath Proof Explorer


Theorem wlknewwlksn

Description: If a walk in a pseudograph has length N , then the sequence of the vertices of the walk is a word representing the walk as word of length N . (Contributed by Alexander van der Vekens, 25-Aug-2018) (Revised by AV, 11-Apr-2021)

Ref Expression
Assertion wlknewwlksn G UPGraph W Walks G N 0 1 st W = N 2 nd W N WWalksN G

Proof

Step Hyp Ref Expression
1 wlkcpr W Walks G 1 st W Walks G 2 nd W
2 wlkn0 1 st W Walks G 2 nd W 2 nd W
3 1 2 sylbi W Walks G 2 nd W
4 3 adantl G UPGraph W Walks G 2 nd W
5 eqid Vtx G = Vtx G
6 eqid iEdg G = iEdg G
7 eqid 1 st W = 1 st W
8 eqid 2 nd W = 2 nd W
9 5 6 7 8 wlkelwrd W Walks G 1 st W Word dom iEdg G 2 nd W : 0 1 st W Vtx G
10 ffz0iswrd 2 nd W : 0 1 st W Vtx G 2 nd W Word Vtx G
11 10 adantl 1 st W Word dom iEdg G 2 nd W : 0 1 st W Vtx G 2 nd W Word Vtx G
12 9 11 syl W Walks G 2 nd W Word Vtx G
13 12 adantl G UPGraph W Walks G 2 nd W Word Vtx G
14 eqid Edg G = Edg G
15 14 upgrwlkvtxedg G UPGraph 1 st W Walks G 2 nd W i 0 ..^ 1 st W 2 nd W i 2 nd W i + 1 Edg G
16 wlklenvm1 1 st W Walks G 2 nd W 1 st W = 2 nd W 1
17 16 adantl G UPGraph 1 st W Walks G 2 nd W 1 st W = 2 nd W 1
18 17 oveq2d G UPGraph 1 st W Walks G 2 nd W 0 ..^ 1 st W = 0 ..^ 2 nd W 1
19 15 18 raleqtrdv G UPGraph 1 st W Walks G 2 nd W i 0 ..^ 2 nd W 1 2 nd W i 2 nd W i + 1 Edg G
20 1 19 sylan2b G UPGraph W Walks G i 0 ..^ 2 nd W 1 2 nd W i 2 nd W i + 1 Edg G
21 4 13 20 3jca G UPGraph W Walks G 2 nd W 2 nd W Word Vtx G i 0 ..^ 2 nd W 1 2 nd W i 2 nd W i + 1 Edg G
22 21 adantr G UPGraph W Walks G N 0 1 st W = N 2 nd W 2 nd W Word Vtx G i 0 ..^ 2 nd W 1 2 nd W i 2 nd W i + 1 Edg G
23 simpl N 0 1 st W = N N 0
24 oveq2 1 st W = N 0 1 st W = 0 N
25 24 adantl 1 st W Word dom iEdg G 1 st W = N 0 1 st W = 0 N
26 25 feq2d 1 st W Word dom iEdg G 1 st W = N 2 nd W : 0 1 st W Vtx G 2 nd W : 0 N Vtx G
27 26 biimpd 1 st W Word dom iEdg G 1 st W = N 2 nd W : 0 1 st W Vtx G 2 nd W : 0 N Vtx G
28 27 impancom 1 st W Word dom iEdg G 2 nd W : 0 1 st W Vtx G 1 st W = N 2 nd W : 0 N Vtx G
29 28 adantld 1 st W Word dom iEdg G 2 nd W : 0 1 st W Vtx G N 0 1 st W = N 2 nd W : 0 N Vtx G
30 29 imp 1 st W Word dom iEdg G 2 nd W : 0 1 st W Vtx G N 0 1 st W = N 2 nd W : 0 N Vtx G
31 ffz0hash N 0 2 nd W : 0 N Vtx G 2 nd W = N + 1
32 23 30 31 syl2an2 1 st W Word dom iEdg G 2 nd W : 0 1 st W Vtx G N 0 1 st W = N 2 nd W = N + 1
33 32 ex 1 st W Word dom iEdg G 2 nd W : 0 1 st W Vtx G N 0 1 st W = N 2 nd W = N + 1
34 9 33 syl W Walks G N 0 1 st W = N 2 nd W = N + 1
35 34 adantl G UPGraph W Walks G N 0 1 st W = N 2 nd W = N + 1
36 35 imp G UPGraph W Walks G N 0 1 st W = N 2 nd W = N + 1
37 23 adantl G UPGraph W Walks G N 0 1 st W = N N 0
38 iswwlksn N 0 2 nd W N WWalksN G 2 nd W WWalks G 2 nd W = N + 1
39 5 14 iswwlks 2 nd W WWalks G 2 nd W 2 nd W Word Vtx G i 0 ..^ 2 nd W 1 2 nd W i 2 nd W i + 1 Edg G
40 39 a1i N 0 2 nd W WWalks G 2 nd W 2 nd W Word Vtx G i 0 ..^ 2 nd W 1 2 nd W i 2 nd W i + 1 Edg G
41 40 anbi1d N 0 2 nd W WWalks G 2 nd W = N + 1 2 nd W 2 nd W Word Vtx G i 0 ..^ 2 nd W 1 2 nd W i 2 nd W i + 1 Edg G 2 nd W = N + 1
42 38 41 bitrd N 0 2 nd W N WWalksN G 2 nd W 2 nd W Word Vtx G i 0 ..^ 2 nd W 1 2 nd W i 2 nd W i + 1 Edg G 2 nd W = N + 1
43 37 42 syl G UPGraph W Walks G N 0 1 st W = N 2 nd W N WWalksN G 2 nd W 2 nd W Word Vtx G i 0 ..^ 2 nd W 1 2 nd W i 2 nd W i + 1 Edg G 2 nd W = N + 1
44 22 36 43 mpbir2and G UPGraph W Walks G N 0 1 st W = N 2 nd W N WWalksN G