Metamath Proof Explorer


Theorem wlkoniswlk

Description: A walk between two vertices is a walk. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Revised by AV, 2-Jan-2021)

Ref Expression
Assertion wlkoniswlk F A WalksOn G B P F Walks G P

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 wlkonprop F A WalksOn G B P G V A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B
3 simp31 G V A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B F Walks G P
4 2 3 syl F A WalksOn G B P F Walks G P