Metamath Proof Explorer


Theorem wlkp

Description: The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021)

Ref Expression
Hypothesis wlkp.v V = Vtx G
Assertion wlkp F Walks G P P : 0 F V

Proof

Step Hyp Ref Expression
1 wlkp.v V = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 wlkprop F Walks G P F Word dom iEdg G P : 0 F V k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
4 3 simp2d F Walks G P P : 0 F V