Metamath Proof Explorer


Theorem wlkp1lem1

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v V = Vtx G
wlkp1.i I = iEdg G
wlkp1.f φ Fun I
wlkp1.a φ I Fin
wlkp1.b φ B W
wlkp1.c φ C V
wlkp1.d φ ¬ B dom I
wlkp1.w φ F Walks G P
wlkp1.n N = F
Assertion wlkp1lem1 φ ¬ N + 1 dom P

Proof

Step Hyp Ref Expression
1 wlkp1.v V = Vtx G
2 wlkp1.i I = iEdg G
3 wlkp1.f φ Fun I
4 wlkp1.a φ I Fin
5 wlkp1.b φ B W
6 wlkp1.c φ C V
7 wlkp1.d φ ¬ B dom I
8 wlkp1.w φ F Walks G P
9 wlkp1.n N = F
10 wlkcl F Walks G P F 0
11 1 wlkp F Walks G P P : 0 F V
12 10 11 jca F Walks G P F 0 P : 0 F V
13 fzp1nel ¬ F + 1 0 F
14 13 a1i F 0 ¬ F + 1 0 F
15 9 oveq1i N + 1 = F + 1
16 15 eleq1i N + 1 0 F F + 1 0 F
17 14 16 sylnibr F 0 ¬ N + 1 0 F
18 eleq2 dom P = 0 F N + 1 dom P N + 1 0 F
19 18 notbid dom P = 0 F ¬ N + 1 dom P ¬ N + 1 0 F
20 17 19 syl5ibrcom F 0 dom P = 0 F ¬ N + 1 dom P
21 fdm P : 0 F V dom P = 0 F
22 20 21 impel F 0 P : 0 F V ¬ N + 1 dom P
23 8 12 22 3syl φ ¬ N + 1 dom P