Metamath Proof Explorer


Theorem wlkp1lem2

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v V = Vtx G
wlkp1.i I = iEdg G
wlkp1.f φ Fun I
wlkp1.a φ I Fin
wlkp1.b φ B W
wlkp1.c φ C V
wlkp1.d φ ¬ B dom I
wlkp1.w φ F Walks G P
wlkp1.n N = F
wlkp1.e φ E Edg G
wlkp1.x φ P N C E
wlkp1.u φ iEdg S = I B E
wlkp1.h H = F N B
Assertion wlkp1lem2 φ H = N + 1

Proof

Step Hyp Ref Expression
1 wlkp1.v V = Vtx G
2 wlkp1.i I = iEdg G
3 wlkp1.f φ Fun I
4 wlkp1.a φ I Fin
5 wlkp1.b φ B W
6 wlkp1.c φ C V
7 wlkp1.d φ ¬ B dom I
8 wlkp1.w φ F Walks G P
9 wlkp1.n N = F
10 wlkp1.e φ E Edg G
11 wlkp1.x φ P N C E
12 wlkp1.u φ iEdg S = I B E
13 wlkp1.h H = F N B
14 13 fveq2i H = F N B
15 14 a1i φ H = F N B
16 opex N B V
17 2 wlkf F Walks G P F Word dom I
18 wrdfin F Word dom I F Fin
19 8 17 18 3syl φ F Fin
20 fzonel ¬ F 0 ..^ F
21 20 a1i φ ¬ F 0 ..^ F
22 eleq1 N = F N 0 ..^ F F 0 ..^ F
23 22 notbid N = F ¬ N 0 ..^ F ¬ F 0 ..^ F
24 21 23 syl5ibr N = F φ ¬ N 0 ..^ F
25 9 24 ax-mp φ ¬ N 0 ..^ F
26 wrdfn F Word dom I F Fn 0 ..^ F
27 8 17 26 3syl φ F Fn 0 ..^ F
28 fnop F Fn 0 ..^ F N B F N 0 ..^ F
29 28 ex F Fn 0 ..^ F N B F N 0 ..^ F
30 27 29 syl φ N B F N 0 ..^ F
31 25 30 mtod φ ¬ N B F
32 19 31 jca φ F Fin ¬ N B F
33 hashunsng N B V F Fin ¬ N B F F N B = F + 1
34 16 32 33 mpsyl φ F N B = F + 1
35 9 eqcomi F = N
36 35 a1i φ F = N
37 36 oveq1d φ F + 1 = N + 1
38 15 34 37 3eqtrd φ H = N + 1