Step |
Hyp |
Ref |
Expression |
1 |
|
wlkp1.v |
|
2 |
|
wlkp1.i |
|
3 |
|
wlkp1.f |
|
4 |
|
wlkp1.a |
|
5 |
|
wlkp1.b |
|
6 |
|
wlkp1.c |
|
7 |
|
wlkp1.d |
|
8 |
|
wlkp1.w |
|
9 |
|
wlkp1.n |
|
10 |
|
wlkp1.e |
|
11 |
|
wlkp1.x |
|
12 |
|
wlkp1.u |
|
13 |
|
wlkp1.h |
|
14 |
|
wlkp1.q |
|
15 |
|
wlkp1.s |
|
16 |
|
eqid |
|
17 |
16
|
wlkf |
|
18 |
|
eqid |
|
19 |
18
|
wlkp |
|
20 |
17 19
|
jca |
|
21 |
8 20
|
syl |
|
22 |
6 15
|
eleqtrrd |
|
23 |
22
|
elfvexd |
|
24 |
23
|
adantr |
|
25 |
|
simprl |
|
26 |
|
snex |
|
27 |
|
unexg |
|
28 |
25 26 27
|
sylancl |
|
29 |
13 28
|
eqeltrid |
|
30 |
|
ovex |
|
31 |
|
fvex |
|
32 |
30 31
|
fpm |
|
33 |
32
|
ad2antll |
|
34 |
|
snex |
|
35 |
|
unexg |
|
36 |
33 34 35
|
sylancl |
|
37 |
14 36
|
eqeltrid |
|
38 |
24 29 37
|
3jca |
|
39 |
21 38
|
mpdan |
|