Metamath Proof Explorer


Theorem wlkprop

Description: Properties of a walk. (Contributed by AV, 5-Nov-2021)

Ref Expression
Hypotheses wksfval.v V = Vtx G
wksfval.i I = iEdg G
Assertion wlkprop F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k

Proof

Step Hyp Ref Expression
1 wksfval.v V = Vtx G
2 wksfval.i I = iEdg G
3 1 2 wksfval G V Walks G = f p | f Word dom I p : 0 f V k 0 ..^ f if- p k = p k + 1 I f k = p k p k p k + 1 I f k
4 3 brfvopab F Walks G P G V F V P V
5 1 2 iswlk G V F V P V F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
6 5 biimpd G V F V P V F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
7 4 6 mpcom F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k