Database
GRAPH THEORY
Walks, paths and cycles
Walks
wlkprop
Next ⟩
wlkv
Metamath Proof Explorer
Ascii
Unicode
Theorem
wlkprop
Description:
Properties of a walk.
(Contributed by
AV
, 5-Nov-2021)
Ref
Expression
Hypotheses
wksfval.v
⊢
V
=
Vtx
⁡
G
wksfval.i
⊢
I
=
iEdg
⁡
G
Assertion
wlkprop
⊢
F
Walks
⁡
G
P
→
F
∈
Word
dom
⁡
I
∧
P
:
0
…
F
⟶
V
∧
∀
k
∈
0
..^
F
if-
P
⁡
k
=
P
⁡
k
+
1
I
⁡
F
⁡
k
=
P
⁡
k
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
Proof
Step
Hyp
Ref
Expression
1
wksfval.v
⊢
V
=
Vtx
⁡
G
2
wksfval.i
⊢
I
=
iEdg
⁡
G
3
1
2
wksfval
⊢
G
∈
V
→
Walks
⁡
G
=
f
p
|
f
∈
Word
dom
⁡
I
∧
p
:
0
…
f
⟶
V
∧
∀
k
∈
0
..^
f
if-
p
⁡
k
=
p
⁡
k
+
1
I
⁡
f
⁡
k
=
p
⁡
k
p
⁡
k
p
⁡
k
+
1
⊆
I
⁡
f
⁡
k
4
3
brfvopab
⊢
F
Walks
⁡
G
P
→
G
∈
V
∧
F
∈
V
∧
P
∈
V
5
1
2
iswlk
⊢
G
∈
V
∧
F
∈
V
∧
P
∈
V
→
F
Walks
⁡
G
P
↔
F
∈
Word
dom
⁡
I
∧
P
:
0
…
F
⟶
V
∧
∀
k
∈
0
..^
F
if-
P
⁡
k
=
P
⁡
k
+
1
I
⁡
F
⁡
k
=
P
⁡
k
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
6
5
biimpd
⊢
G
∈
V
∧
F
∈
V
∧
P
∈
V
→
F
Walks
⁡
G
P
→
F
∈
Word
dom
⁡
I
∧
P
:
0
…
F
⟶
V
∧
∀
k
∈
0
..^
F
if-
P
⁡
k
=
P
⁡
k
+
1
I
⁡
F
⁡
k
=
P
⁡
k
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
7
4
6
mpcom
⊢
F
Walks
⁡
G
P
→
F
∈
Word
dom
⁡
I
∧
P
:
0
…
F
⟶
V
∧
∀
k
∈
0
..^
F
if-
P
⁡
k
=
P
⁡
k
+
1
I
⁡
F
⁡
k
=
P
⁡
k
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k