Database
GRAPH THEORY
Walks, paths and cycles
Walks
wlkpvtx
Next ⟩
wlkepvtx
Metamath Proof Explorer
Ascii
Unicode
Theorem
wlkpvtx
Description:
A walk connects vertices.
(Contributed by
AV
, 22-Feb-2021)
Ref
Expression
Hypothesis
wlkpvtx.v
⊢
V
=
Vtx
⁡
G
Assertion
wlkpvtx
⊢
F
Walks
⁡
G
P
→
N
∈
0
…
F
→
P
⁡
N
∈
V
Proof
Step
Hyp
Ref
Expression
1
wlkpvtx.v
⊢
V
=
Vtx
⁡
G
2
1
wlkp
⊢
F
Walks
⁡
G
P
→
P
:
0
…
F
⟶
V
3
ffvelrn
⊢
P
:
0
…
F
⟶
V
∧
N
∈
0
…
F
→
P
⁡
N
∈
V
4
3
ex
⊢
P
:
0
…
F
⟶
V
→
N
∈
0
…
F
→
P
⁡
N
∈
V
5
2
4
syl
⊢
F
Walks
⁡
G
P
→
N
∈
0
…
F
→
P
⁡
N
∈
V