Metamath Proof Explorer


Theorem wlkpvtx

Description: A walk connects vertices. (Contributed by AV, 22-Feb-2021)

Ref Expression
Hypothesis wlkpvtx.v V = Vtx G
Assertion wlkpvtx F Walks G P N 0 F P N V

Proof

Step Hyp Ref Expression
1 wlkpvtx.v V = Vtx G
2 1 wlkp F Walks G P P : 0 F V
3 ffvelrn P : 0 F V N 0 F P N V
4 3 ex P : 0 F V N 0 F P N V
5 2 4 syl F Walks G P N 0 F P N V