Metamath Proof Explorer


Theorem wlkreslem

Description: Lemma for wlkres . (Contributed by AV, 5-Mar-2021) (Revised by AV, 30-Nov-2022)

Ref Expression
Hypotheses wlkres.v V = Vtx G
wlkres.i I = iEdg G
wlkres.d φ F Walks G P
wlkres.n φ N 0 ..^ F
wlkres.s φ Vtx S = V
Assertion wlkreslem φ S V

Proof

Step Hyp Ref Expression
1 wlkres.v V = Vtx G
2 wlkres.i I = iEdg G
3 wlkres.d φ F Walks G P
4 wlkres.n φ N 0 ..^ F
5 wlkres.s φ Vtx S = V
6 ax-1 S V φ S V
7 df-nel S V ¬ S V
8 df-br F Walks G P F P Walks G
9 ne0i F P Walks G Walks G
10 5 1 eqtrdi φ Vtx S = Vtx G
11 10 anim1ci φ S V S V Vtx S = Vtx G
12 wlk0prc S V Vtx S = Vtx G Walks G =
13 eqneqall Walks G = Walks G S V
14 11 12 13 3syl φ S V Walks G S V
15 14 expcom S V φ Walks G S V
16 15 com13 Walks G φ S V S V
17 9 16 syl F P Walks G φ S V S V
18 8 17 sylbi F Walks G P φ S V S V
19 3 18 mpcom φ S V S V
20 19 com12 S V φ S V
21 7 20 sylbir ¬ S V φ S V
22 6 21 pm2.61i φ S V