Metamath Proof Explorer


Theorem wlksnfi

Description: The number of walks of fixed length is finite if the number of vertices is finite (in the graph). (Contributed by Alexander van der Vekens, 25-Aug-2018) (Revised by AV, 20-Apr-2021)

Ref Expression
Assertion wlksnfi G FinUSGraph N 0 p Walks G | 1 st p = N Fin

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 fusgrvtxfi G FinUSGraph Vtx G Fin
3 2 adantr G FinUSGraph N 0 Vtx G Fin
4 wwlksnfi Vtx G Fin N WWalksN G Fin
5 3 4 syl G FinUSGraph N 0 N WWalksN G Fin
6 fusgrusgr G FinUSGraph G USGraph
7 usgruspgr G USGraph G USHGraph
8 6 7 syl G FinUSGraph G USHGraph
9 wlknwwlksnen G USHGraph N 0 p Walks G | 1 st p = N N WWalksN G
10 8 9 sylan G FinUSGraph N 0 p Walks G | 1 st p = N N WWalksN G
11 enfii N WWalksN G Fin p Walks G | 1 st p = N N WWalksN G p Walks G | 1 st p = N Fin
12 5 10 11 syl2anc G FinUSGraph N 0 p Walks G | 1 st p = N Fin