Metamath Proof Explorer


Theorem wlkson

Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Revised by AV, 30-Dec-2020) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypothesis wlkson.v V = Vtx G
Assertion wlkson A V B V A WalksOn G B = f p | f Walks G p p 0 = A p f = B

Proof

Step Hyp Ref Expression
1 wlkson.v V = Vtx G
2 1 1vgrex A V G V
3 2 adantr A V B V G V
4 simpl A V B V A V
5 4 1 eleqtrdi A V B V A Vtx G
6 simpr A V B V B V
7 6 1 eleqtrdi A V B V B Vtx G
8 eqeq2 a = A p 0 = a p 0 = A
9 eqeq2 b = B p f = b p f = B
10 8 9 bi2anan9 a = A b = B p 0 = a p f = b p 0 = A p f = B
11 biidd g = G p 0 = a p f = b p 0 = a p f = b
12 df-wlkson WalksOn = g V a Vtx g , b Vtx g f p | f Walks g p p 0 = a p f = b
13 eqid Vtx g = Vtx g
14 3anass f Walks g p p 0 = a p f = b f Walks g p p 0 = a p f = b
15 14 biancomi f Walks g p p 0 = a p f = b p 0 = a p f = b f Walks g p
16 15 opabbii f p | f Walks g p p 0 = a p f = b = f p | p 0 = a p f = b f Walks g p
17 13 13 16 mpoeq123i a Vtx g , b Vtx g f p | f Walks g p p 0 = a p f = b = a Vtx g , b Vtx g f p | p 0 = a p f = b f Walks g p
18 17 mpteq2i g V a Vtx g , b Vtx g f p | f Walks g p p 0 = a p f = b = g V a Vtx g , b Vtx g f p | p 0 = a p f = b f Walks g p
19 12 18 eqtri WalksOn = g V a Vtx g , b Vtx g f p | p 0 = a p f = b f Walks g p
20 3 5 7 10 11 19 mptmpoopabbrd A V B V A WalksOn G B = f p | p 0 = A p f = B f Walks G p
21 ancom p 0 = A p f = B f Walks G p f Walks G p p 0 = A p f = B
22 3anass f Walks G p p 0 = A p f = B f Walks G p p 0 = A p f = B
23 21 22 bitr4i p 0 = A p f = B f Walks G p f Walks G p p 0 = A p f = B
24 23 opabbii f p | p 0 = A p f = B f Walks G p = f p | f Walks G p p 0 = A p f = B
25 20 24 eqtrdi A V B V A WalksOn G B = f p | f Walks G p p 0 = A p f = B