| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkswwlksf1o.f |
|
| 2 |
|
fvex |
|
| 3 |
|
breq1 |
|
| 4 |
2 3
|
spcev |
|
| 5 |
|
wlkiswwlks |
|
| 6 |
4 5
|
imbitrid |
|
| 7 |
|
wlkcpr |
|
| 8 |
7
|
biimpi |
|
| 9 |
6 8
|
impel |
|
| 10 |
9 1
|
fmptd |
|
| 11 |
|
simpr |
|
| 12 |
|
fveq2 |
|
| 13 |
|
id |
|
| 14 |
|
fvexd |
|
| 15 |
1 12 13 14
|
fvmptd3 |
|
| 16 |
|
fveq2 |
|
| 17 |
|
id |
|
| 18 |
|
fvexd |
|
| 19 |
1 16 17 18
|
fvmptd3 |
|
| 20 |
15 19
|
eqeqan12d |
|
| 21 |
20
|
adantl |
|
| 22 |
|
uspgr2wlkeqi |
|
| 23 |
22
|
ad4ant134 |
|
| 24 |
23
|
ex |
|
| 25 |
21 24
|
sylbid |
|
| 26 |
25
|
ralrimivva |
|
| 27 |
|
dff13 |
|
| 28 |
11 26 27
|
sylanbrc |
|
| 29 |
|
wlkiswwlks |
|
| 30 |
29
|
adantr |
|
| 31 |
|
df-br |
|
| 32 |
|
vex |
|
| 33 |
|
vex |
|
| 34 |
32 33
|
op2nd |
|
| 35 |
34
|
eqcomi |
|
| 36 |
|
opex |
|
| 37 |
|
eleq1 |
|
| 38 |
|
fveq2 |
|
| 39 |
38
|
eqeq2d |
|
| 40 |
37 39
|
anbi12d |
|
| 41 |
36 40
|
spcev |
|
| 42 |
35 41
|
mpan2 |
|
| 43 |
31 42
|
sylbi |
|
| 44 |
43
|
exlimiv |
|
| 45 |
30 44
|
biimtrrdi |
|
| 46 |
45
|
imp |
|
| 47 |
|
df-rex |
|
| 48 |
46 47
|
sylibr |
|
| 49 |
15
|
eqeq2d |
|
| 50 |
49
|
rexbiia |
|
| 51 |
48 50
|
sylibr |
|
| 52 |
51
|
ralrimiva |
|
| 53 |
|
dffo3 |
|
| 54 |
11 52 53
|
sylanbrc |
|
| 55 |
|
df-f1o |
|
| 56 |
28 54 55
|
sylanbrc |
|
| 57 |
10 56
|
mpdan |
|