Step |
Hyp |
Ref |
Expression |
1 |
|
wlkswwlksf1o.f |
|
2 |
|
fvex |
|
3 |
|
breq1 |
|
4 |
2 3
|
spcev |
|
5 |
|
wlkiswwlks |
|
6 |
4 5
|
syl5ib |
|
7 |
|
wlkcpr |
|
8 |
7
|
biimpi |
|
9 |
6 8
|
impel |
|
10 |
9 1
|
fmptd |
|
11 |
|
simpr |
|
12 |
|
fveq2 |
|
13 |
|
id |
|
14 |
|
fvexd |
|
15 |
1 12 13 14
|
fvmptd3 |
|
16 |
|
fveq2 |
|
17 |
|
id |
|
18 |
|
fvexd |
|
19 |
1 16 17 18
|
fvmptd3 |
|
20 |
15 19
|
eqeqan12d |
|
21 |
20
|
adantl |
|
22 |
|
uspgr2wlkeqi |
|
23 |
22
|
ad4ant134 |
|
24 |
23
|
ex |
|
25 |
21 24
|
sylbid |
|
26 |
25
|
ralrimivva |
|
27 |
|
dff13 |
|
28 |
11 26 27
|
sylanbrc |
|
29 |
|
wlkiswwlks |
|
30 |
29
|
adantr |
|
31 |
|
df-br |
|
32 |
|
vex |
|
33 |
|
vex |
|
34 |
32 33
|
op2nd |
|
35 |
34
|
eqcomi |
|
36 |
|
opex |
|
37 |
|
eleq1 |
|
38 |
|
fveq2 |
|
39 |
38
|
eqeq2d |
|
40 |
37 39
|
anbi12d |
|
41 |
36 40
|
spcev |
|
42 |
35 41
|
mpan2 |
|
43 |
31 42
|
sylbi |
|
44 |
43
|
exlimiv |
|
45 |
30 44
|
syl6bir |
|
46 |
45
|
imp |
|
47 |
|
df-rex |
|
48 |
46 47
|
sylibr |
|
49 |
15
|
eqeq2d |
|
50 |
49
|
rexbiia |
|
51 |
48 50
|
sylibr |
|
52 |
51
|
ralrimiva |
|
53 |
|
dffo3 |
|
54 |
11 52 53
|
sylanbrc |
|
55 |
|
df-f1o |
|
56 |
28 54 55
|
sylanbrc |
|
57 |
10 56
|
mpdan |
|