Metamath Proof Explorer


Theorem wlkswwlksf1o

Description: The mapping of (ordinary) walks to their sequences of vertices is a bijection in a simple pseudograph. (Contributed by AV, 6-May-2021)

Ref Expression
Hypothesis wlkswwlksf1o.f F = w Walks G 2 nd w
Assertion wlkswwlksf1o G USHGraph F : Walks G 1-1 onto WWalks G

Proof

Step Hyp Ref Expression
1 wlkswwlksf1o.f F = w Walks G 2 nd w
2 fvex 1 st w V
3 breq1 f = 1 st w f Walks G 2 nd w 1 st w Walks G 2 nd w
4 2 3 spcev 1 st w Walks G 2 nd w f f Walks G 2 nd w
5 wlkiswwlks G USHGraph f f Walks G 2 nd w 2 nd w WWalks G
6 4 5 syl5ib G USHGraph 1 st w Walks G 2 nd w 2 nd w WWalks G
7 wlkcpr w Walks G 1 st w Walks G 2 nd w
8 7 biimpi w Walks G 1 st w Walks G 2 nd w
9 6 8 impel G USHGraph w Walks G 2 nd w WWalks G
10 9 1 fmptd G USHGraph F : Walks G WWalks G
11 simpr G USHGraph F : Walks G WWalks G F : Walks G WWalks G
12 fveq2 w = x 2 nd w = 2 nd x
13 id x Walks G x Walks G
14 fvexd x Walks G 2 nd x V
15 1 12 13 14 fvmptd3 x Walks G F x = 2 nd x
16 fveq2 w = y 2 nd w = 2 nd y
17 id y Walks G y Walks G
18 fvexd y Walks G 2 nd y V
19 1 16 17 18 fvmptd3 y Walks G F y = 2 nd y
20 15 19 eqeqan12d x Walks G y Walks G F x = F y 2 nd x = 2 nd y
21 20 adantl G USHGraph F : Walks G WWalks G x Walks G y Walks G F x = F y 2 nd x = 2 nd y
22 uspgr2wlkeqi G USHGraph x Walks G y Walks G 2 nd x = 2 nd y x = y
23 22 ad4ant134 G USHGraph F : Walks G WWalks G x Walks G y Walks G 2 nd x = 2 nd y x = y
24 23 ex G USHGraph F : Walks G WWalks G x Walks G y Walks G 2 nd x = 2 nd y x = y
25 21 24 sylbid G USHGraph F : Walks G WWalks G x Walks G y Walks G F x = F y x = y
26 25 ralrimivva G USHGraph F : Walks G WWalks G x Walks G y Walks G F x = F y x = y
27 dff13 F : Walks G 1-1 WWalks G F : Walks G WWalks G x Walks G y Walks G F x = F y x = y
28 11 26 27 sylanbrc G USHGraph F : Walks G WWalks G F : Walks G 1-1 WWalks G
29 wlkiswwlks G USHGraph f f Walks G y y WWalks G
30 29 adantr G USHGraph F : Walks G WWalks G f f Walks G y y WWalks G
31 df-br f Walks G y f y Walks G
32 vex f V
33 vex y V
34 32 33 op2nd 2 nd f y = y
35 34 eqcomi y = 2 nd f y
36 opex f y V
37 eleq1 x = f y x Walks G f y Walks G
38 fveq2 x = f y 2 nd x = 2 nd f y
39 38 eqeq2d x = f y y = 2 nd x y = 2 nd f y
40 37 39 anbi12d x = f y x Walks G y = 2 nd x f y Walks G y = 2 nd f y
41 36 40 spcev f y Walks G y = 2 nd f y x x Walks G y = 2 nd x
42 35 41 mpan2 f y Walks G x x Walks G y = 2 nd x
43 31 42 sylbi f Walks G y x x Walks G y = 2 nd x
44 43 exlimiv f f Walks G y x x Walks G y = 2 nd x
45 30 44 syl6bir G USHGraph F : Walks G WWalks G y WWalks G x x Walks G y = 2 nd x
46 45 imp G USHGraph F : Walks G WWalks G y WWalks G x x Walks G y = 2 nd x
47 df-rex x Walks G y = 2 nd x x x Walks G y = 2 nd x
48 46 47 sylibr G USHGraph F : Walks G WWalks G y WWalks G x Walks G y = 2 nd x
49 15 eqeq2d x Walks G y = F x y = 2 nd x
50 49 rexbiia x Walks G y = F x x Walks G y = 2 nd x
51 48 50 sylibr G USHGraph F : Walks G WWalks G y WWalks G x Walks G y = F x
52 51 ralrimiva G USHGraph F : Walks G WWalks G y WWalks G x Walks G y = F x
53 dffo3 F : Walks G onto WWalks G F : Walks G WWalks G y WWalks G x Walks G y = F x
54 11 52 53 sylanbrc G USHGraph F : Walks G WWalks G F : Walks G onto WWalks G
55 df-f1o F : Walks G 1-1 onto WWalks G F : Walks G 1-1 WWalks G F : Walks G onto WWalks G
56 28 54 55 sylanbrc G USHGraph F : Walks G WWalks G F : Walks G 1-1 onto WWalks G
57 10 56 mpdan G USHGraph F : Walks G 1-1 onto WWalks G