Metamath Proof Explorer


Theorem wlkv

Description: The classes involved in a walk are sets. (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by AV, 3-Feb-2021)

Ref Expression
Assertion wlkv F Walks G P G V F V P V

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 wksfval G V Walks G = f p | f Word dom iEdg G p : 0 f Vtx G k 0 ..^ f if- p k = p k + 1 iEdg G f k = p k p k p k + 1 iEdg G f k
4 3 brfvopab F Walks G P G V F V P V