Metamath Proof Explorer


Theorem wlkvtxeledg

Description: Each pair of adjacent vertices in a walk is a subset of an edge. (Contributed by AV, 28-Jan-2021) (Proof shortened by AV, 4-Apr-2021)

Ref Expression
Hypothesis wlkvtxeledg.i I = iEdg G
Assertion wlkvtxeledg F Walks G P k 0 ..^ F P k P k + 1 I F k

Proof

Step Hyp Ref Expression
1 wlkvtxeledg.i I = iEdg G
2 wlkv F Walks G P G V F V P V
3 eqid Vtx G = Vtx G
4 3 1 iswlk G V F V P V F Walks G P F Word dom I P : 0 F Vtx G k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
5 ifpsnprss if- P k = P k + 1 I F k = P k P k P k + 1 I F k P k P k + 1 I F k
6 5 ralimi k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k k 0 ..^ F P k P k + 1 I F k
7 6 3ad2ant3 F Word dom I P : 0 F Vtx G k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k k 0 ..^ F P k P k + 1 I F k
8 4 7 syl6bi G V F V P V F Walks G P k 0 ..^ F P k P k + 1 I F k
9 2 8 mpcom F Walks G P k 0 ..^ F P k P k + 1 I F k