Metamath Proof Explorer


Theorem wlogle

Description: If the predicate ch ( x , y ) is symmetric under interchange of x , y , then "without loss of generality" we can assume that x <_ y . (Contributed by Mario Carneiro, 18-Aug-2014) (Revised by Mario Carneiro, 11-Sep-2014)

Ref Expression
Hypotheses wlogle.1 z = x w = y ψ χ
wlogle.2 z = y w = x ψ θ
wlogle.3 φ S
wlogle.4 φ x S y S χ θ
wlogle.5 φ x S y S x y χ
Assertion wlogle φ x S y S χ

Proof

Step Hyp Ref Expression
1 wlogle.1 z = x w = y ψ χ
2 wlogle.2 z = y w = x ψ θ
3 wlogle.3 φ S
4 wlogle.4 φ x S y S χ θ
5 wlogle.5 φ x S y S x y χ
6 4 3adantr3 φ x S y S x y χ θ
7 5 6 mpbid φ x S y S x y θ
8 1 2 3 7 5 wloglei φ x S y S χ