Step |
Hyp |
Ref |
Expression |
1 |
|
wlogle.1 |
|
2 |
|
wlogle.2 |
|
3 |
|
wlogle.3 |
|
4 |
|
wloglei.4 |
|
5 |
|
wloglei.5 |
|
6 |
3
|
adantr |
|
7 |
|
simprr |
|
8 |
6 7
|
sseldd |
|
9 |
|
simprl |
|
10 |
6 9
|
sseldd |
|
11 |
|
vex |
|
12 |
|
vex |
|
13 |
|
eleq1w |
|
14 |
|
eleq1w |
|
15 |
13 14
|
bi2anan9 |
|
16 |
15
|
anbi2d |
|
17 |
|
breq12 |
|
18 |
17
|
ancoms |
|
19 |
16 18
|
anbi12d |
|
20 |
19 1
|
imbi12d |
|
21 |
|
vex |
|
22 |
|
vex |
|
23 |
|
ancom |
|
24 |
|
eleq1w |
|
25 |
|
eleq1w |
|
26 |
24 25
|
bi2anan9 |
|
27 |
23 26
|
syl5bb |
|
28 |
27
|
anbi2d |
|
29 |
|
breq12 |
|
30 |
29
|
ancoms |
|
31 |
28 30
|
anbi12d |
|
32 |
|
equcom |
|
33 |
|
equcom |
|
34 |
32 33 2
|
syl2anb |
|
35 |
34
|
bicomd |
|
36 |
31 35
|
imbi12d |
|
37 |
|
df-3an |
|
38 |
37 4
|
sylan2br |
|
39 |
38
|
anassrs |
|
40 |
21 22 36 39
|
vtocl2 |
|
41 |
11 12 20 40
|
vtocl2 |
|
42 |
37 5
|
sylan2br |
|
43 |
42
|
anassrs |
|
44 |
8 10 41 43
|
lecasei |
|