Metamath Proof Explorer


Theorem wofi

Description: A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion wofi R Or A A Fin R We A

Proof

Step Hyp Ref Expression
1 sopo R Or A R Po A
2 frfi R Po A A Fin R Fr A
3 1 2 sylan R Or A A Fin R Fr A
4 simpl R Or A A Fin R Or A
5 df-we R We A R Fr A R Or A
6 3 4 5 sylanbrc R Or A A Fin R We A