Step |
Hyp |
Ref |
Expression |
1 |
|
wwlknon |
|
2 |
1
|
a1i |
|
3 |
2
|
anbi1d |
|
4 |
|
3anass |
|
5 |
4
|
anbi1i |
|
6 |
|
anass |
|
7 |
5 6
|
bitri |
|
8 |
3 7
|
bitrdi |
|
9 |
8
|
rabbidva2 |
|
10 |
|
usgrupgr |
|
11 |
|
wlklnwwlknupgr |
|
12 |
10 11
|
syl |
|
13 |
12
|
bicomd |
|
14 |
13
|
adantr |
|
15 |
|
simprl |
|
16 |
|
simprl |
|
17 |
16
|
adantr |
|
18 |
|
fveq2 |
|
19 |
18
|
ad2antll |
|
20 |
|
simprr |
|
21 |
20
|
adantr |
|
22 |
19 21
|
eqtrd |
|
23 |
|
eqid |
|
24 |
23
|
wlkp |
|
25 |
|
oveq2 |
|
26 |
25
|
feq2d |
|
27 |
24 26
|
syl5ibcom |
|
28 |
27
|
imp |
|
29 |
|
id |
|
30 |
|
2nn0 |
|
31 |
|
0elfz |
|
32 |
30 31
|
mp1i |
|
33 |
29 32
|
ffvelrnd |
|
34 |
|
nn0fz0 |
|
35 |
30 34
|
mpbi |
|
36 |
35
|
a1i |
|
37 |
29 36
|
ffvelrnd |
|
38 |
33 37
|
jca |
|
39 |
28 38
|
syl |
|
40 |
|
eleq1 |
|
41 |
|
eleq1 |
|
42 |
40 41
|
bi2anan9 |
|
43 |
39 42
|
syl5ib |
|
44 |
43
|
adantl |
|
45 |
44
|
imp |
|
46 |
|
vex |
|
47 |
|
vex |
|
48 |
46 47
|
pm3.2i |
|
49 |
23
|
iswlkon |
|
50 |
45 48 49
|
sylancl |
|
51 |
15 17 22 50
|
mpbir3and |
|
52 |
|
simplll |
|
53 |
|
simprr |
|
54 |
|
simpllr |
|
55 |
|
usgr2wlkspth |
|
56 |
52 53 54 55
|
syl3anc |
|
57 |
51 56
|
mpbid |
|
58 |
57
|
ex |
|
59 |
58
|
eximdv |
|
60 |
59
|
ex |
|
61 |
60
|
com23 |
|
62 |
14 61
|
sylbid |
|
63 |
62
|
imp |
|
64 |
63
|
pm4.71d |
|
65 |
64
|
bicomd |
|
66 |
65
|
rabbidva |
|
67 |
9 66
|
eqtrd |
|
68 |
23
|
iswspthsnon |
|
69 |
23
|
iswwlksnon |
|
70 |
67 68 69
|
3eqtr4g |
|