Metamath Proof Explorer


Theorem wrd3tpop

Description: A word of length three represented as triple of ordered pairs. (Contributed by AV, 26-Jan-2021)

Ref Expression
Assertion wrd3tpop W Word V W = 3 W = 0 W 0 1 W 1 2 W 2

Proof

Step Hyp Ref Expression
1 wrdfn W Word V W Fn 0 ..^ W
2 1 adantr W Word V W = 3 W Fn 0 ..^ W
3 oveq2 W = 3 0 ..^ W = 0 ..^ 3
4 fzo0to3tp 0 ..^ 3 = 0 1 2
5 3 4 eqtr2di W = 3 0 1 2 = 0 ..^ W
6 5 adantl W Word V W = 3 0 1 2 = 0 ..^ W
7 6 fneq2d W Word V W = 3 W Fn 0 1 2 W Fn 0 ..^ W
8 2 7 mpbird W Word V W = 3 W Fn 0 1 2
9 c0ex 0 V
10 1ex 1 V
11 2ex 2 V
12 9 10 11 fntpb W Fn 0 1 2 W = 0 W 0 1 W 1 2 W 2
13 8 12 sylib W Word V W = 3 W = 0 W 0 1 W 1 2 W 2