Metamath Proof Explorer


Theorem wrdco

Description: Mapping a word by a function. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Assertion wrdco W Word A F : A B F W Word B

Proof

Step Hyp Ref Expression
1 simpr W Word A F : A B F : A B
2 wrdf W Word A W : 0 ..^ W A
3 2 adantr W Word A F : A B W : 0 ..^ W A
4 fco F : A B W : 0 ..^ W A F W : 0 ..^ W B
5 1 3 4 syl2anc W Word A F : A B F W : 0 ..^ W B
6 iswrdi F W : 0 ..^ W B F W Word B
7 5 6 syl W Word A F : A B F W Word B