Database
REAL AND COMPLEX NUMBERS
Words over a set
Mapping words by a function
wrdco
Next ⟩
lenco
Metamath Proof Explorer
Ascii
Unicode
Theorem
wrdco
Description:
Mapping a word by a function.
(Contributed by
Stefan O'Rear
, 27-Aug-2015)
Ref
Expression
Assertion
wrdco
⊢
W
∈
Word
A
∧
F
:
A
⟶
B
→
F
∘
W
∈
Word
B
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢
W
∈
Word
A
∧
F
:
A
⟶
B
→
F
:
A
⟶
B
2
wrdf
⊢
W
∈
Word
A
→
W
:
0
..^
W
⟶
A
3
2
adantr
⊢
W
∈
Word
A
∧
F
:
A
⟶
B
→
W
:
0
..^
W
⟶
A
4
fco
⊢
F
:
A
⟶
B
∧
W
:
0
..^
W
⟶
A
→
F
∘
W
:
0
..^
W
⟶
B
5
1
3
4
syl2anc
⊢
W
∈
Word
A
∧
F
:
A
⟶
B
→
F
∘
W
:
0
..^
W
⟶
B
6
iswrdi
⊢
F
∘
W
:
0
..^
W
⟶
B
→
F
∘
W
∈
Word
B
7
5
6
syl
⊢
W
∈
Word
A
∧
F
:
A
⟶
B
→
F
∘
W
∈
Word
B