Metamath Proof Explorer


Theorem wrdeqs1cat

Description: Decompose a nonempty word by separating off the first symbol. (Contributed by Stefan O'Rear, 25-Aug-2015) (Revised by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 12-Oct-2022)

Ref Expression
Assertion wrdeqs1cat W Word A W W = ⟨“ W 0 ”⟩ ++ W substr 1 W

Proof

Step Hyp Ref Expression
1 simpl W Word A W W Word A
2 wrdfin W Word A W Fin
3 1elfz0hash W Fin W 1 0 W
4 2 3 sylan W Word A W 1 0 W
5 lennncl W Word A W W
6 5 nnnn0d W Word A W W 0
7 eluzfz2 W 0 W 0 W
8 nn0uz 0 = 0
9 7 8 eleq2s W 0 W 0 W
10 6 9 syl W Word A W W 0 W
11 ccatpfx W Word A 1 0 W W 0 W W prefix 1 ++ W substr 1 W = W prefix W
12 1 4 10 11 syl3anc W Word A W W prefix 1 ++ W substr 1 W = W prefix W
13 pfx1 W Word A W W prefix 1 = ⟨“ W 0 ”⟩
14 13 oveq1d W Word A W W prefix 1 ++ W substr 1 W = ⟨“ W 0 ”⟩ ++ W substr 1 W
15 pfxid W Word A W prefix W = W
16 15 adantr W Word A W W prefix W = W
17 12 14 16 3eqtr3rd W Word A W W = ⟨“ W 0 ”⟩ ++ W substr 1 W