Metamath Proof Explorer


Theorem wrdexb

Description: The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 23-Nov-2018)

Ref Expression
Assertion wrdexb S V Word S V

Proof

Step Hyp Ref Expression
1 wrdexg S V Word S V
2 opex 0 s V
3 2 snid 0 s 0 s
4 snopiswrd s S 0 s Word S
5 elunii 0 s 0 s 0 s Word S 0 s Word S
6 3 4 5 sylancr s S 0 s Word S
7 c0ex 0 V
8 vex s V
9 7 8 opeluu 0 s Word S 0 Word S s Word S
10 6 9 syl s S 0 Word S s Word S
11 10 simprd s S s Word S
12 11 ssriv S Word S
13 uniexg Word S V Word S V
14 uniexg Word S V Word S V
15 uniexg Word S V Word S V
16 13 14 15 3syl Word S V Word S V
17 ssexg S Word S Word S V S V
18 12 16 17 sylancr Word S V S V
19 1 18 impbii S V Word S V