Metamath Proof Explorer


Theorem wrdexg

Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016) (Proof shortened by JJ, 18-Nov-2022)

Ref Expression
Assertion wrdexg S V Word S V

Proof

Step Hyp Ref Expression
1 wrdval S V Word S = l 0 S 0 ..^ l
2 nn0ex 0 V
3 ovexd S V l 0 S 0 ..^ l V
4 3 ralrimiva S V l 0 S 0 ..^ l V
5 iunexg 0 V l 0 S 0 ..^ l V l 0 S 0 ..^ l V
6 2 4 5 sylancr S V l 0 S 0 ..^ l V
7 1 6 eqeltrd S V Word S V