Metamath Proof Explorer


Theorem wrdf

Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion wrdf W Word S W : 0 ..^ W S

Proof

Step Hyp Ref Expression
1 iswrd W Word S l 0 W : 0 ..^ l S
2 simpr l 0 W : 0 ..^ l S W : 0 ..^ l S
3 fnfzo0hash l 0 W : 0 ..^ l S W = l
4 3 oveq2d l 0 W : 0 ..^ l S 0 ..^ W = 0 ..^ l
5 4 feq2d l 0 W : 0 ..^ l S W : 0 ..^ W S W : 0 ..^ l S
6 2 5 mpbird l 0 W : 0 ..^ l S W : 0 ..^ W S
7 6 rexlimiva l 0 W : 0 ..^ l S W : 0 ..^ W S
8 1 7 sylbi W Word S W : 0 ..^ W S