Metamath Proof Explorer


Theorem wrdfin

Description: A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015) (Proof shortened by AV, 18-Nov-2018)

Ref Expression
Assertion wrdfin W Word S W Fin

Proof

Step Hyp Ref Expression
1 wrdfn W Word S W Fn 0 ..^ W
2 fzofi 0 ..^ W Fin
3 fnfi W Fn 0 ..^ W 0 ..^ W Fin W Fin
4 1 2 3 sylancl W Word S W Fin