Database
REAL AND COMPLEX NUMBERS
Words over a set
Singleton words
wrdl1exs1
Next ⟩
wrdl1s1
Metamath Proof Explorer
Ascii
Unicode
Theorem
wrdl1exs1
Description:
A word of length 1 is a singleton word.
(Contributed by
AV
, 24-Jan-2021)
Ref
Expression
Assertion
wrdl1exs1
⊢
W
∈
Word
S
∧
W
=
1
→
∃
s
∈
S
W
=
〈“
s
”〉
Proof
Step
Hyp
Ref
Expression
1
1le1
⊢
1
≤
1
2
breq2
⊢
W
=
1
→
1
≤
W
↔
1
≤
1
3
1
2
mpbiri
⊢
W
=
1
→
1
≤
W
4
wrdsymb1
⊢
W
∈
Word
S
∧
1
≤
W
→
W
⁡
0
∈
S
5
3
4
sylan2
⊢
W
∈
Word
S
∧
W
=
1
→
W
⁡
0
∈
S
6
s1eq
⊢
s
=
W
⁡
0
→
〈“
s
”〉
=
〈“
W
⁡
0
”〉
7
6
adantl
⊢
W
∈
Word
S
∧
W
=
1
∧
s
=
W
⁡
0
→
〈“
s
”〉
=
〈“
W
⁡
0
”〉
8
7
eqeq2d
⊢
W
∈
Word
S
∧
W
=
1
∧
s
=
W
⁡
0
→
W
=
〈“
s
”〉
↔
W
=
〈“
W
⁡
0
”〉
9
eqs1
⊢
W
∈
Word
S
∧
W
=
1
→
W
=
〈“
W
⁡
0
”〉
10
5
8
9
rspcedvd
⊢
W
∈
Word
S
∧
W
=
1
→
∃
s
∈
S
W
=
〈“
s
”〉