Metamath Proof Explorer


Theorem wrdl1exs1

Description: A word of length 1 is a singleton word. (Contributed by AV, 24-Jan-2021)

Ref Expression
Assertion wrdl1exs1 W Word S W = 1 s S W = ⟨“ s ”⟩

Proof

Step Hyp Ref Expression
1 1le1 1 1
2 breq2 W = 1 1 W 1 1
3 1 2 mpbiri W = 1 1 W
4 wrdsymb1 W Word S 1 W W 0 S
5 3 4 sylan2 W Word S W = 1 W 0 S
6 s1eq s = W 0 ⟨“ s ”⟩ = ⟨“ W 0 ”⟩
7 6 adantl W Word S W = 1 s = W 0 ⟨“ s ”⟩ = ⟨“ W 0 ”⟩
8 7 eqeq2d W Word S W = 1 s = W 0 W = ⟨“ s ”⟩ W = ⟨“ W 0 ”⟩
9 eqs1 W Word S W = 1 W = ⟨“ W 0 ”⟩
10 5 8 9 rspcedvd W Word S W = 1 s S W = ⟨“ s ”⟩