Metamath Proof Explorer


Theorem wrdl1s1

Description: A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018) (Proof shortened by AV, 14-Oct-2018)

Ref Expression
Assertion wrdl1s1 S V W = ⟨“ S ”⟩ W Word V W = 1 W 0 = S

Proof

Step Hyp Ref Expression
1 s1cl S V ⟨“ S ”⟩ Word V
2 s1len ⟨“ S ”⟩ = 1
3 2 a1i S V ⟨“ S ”⟩ = 1
4 s1fv S V ⟨“ S ”⟩ 0 = S
5 1 3 4 3jca S V ⟨“ S ”⟩ Word V ⟨“ S ”⟩ = 1 ⟨“ S ”⟩ 0 = S
6 eleq1 W = ⟨“ S ”⟩ W Word V ⟨“ S ”⟩ Word V
7 fveqeq2 W = ⟨“ S ”⟩ W = 1 ⟨“ S ”⟩ = 1
8 fveq1 W = ⟨“ S ”⟩ W 0 = ⟨“ S ”⟩ 0
9 8 eqeq1d W = ⟨“ S ”⟩ W 0 = S ⟨“ S ”⟩ 0 = S
10 6 7 9 3anbi123d W = ⟨“ S ”⟩ W Word V W = 1 W 0 = S ⟨“ S ”⟩ Word V ⟨“ S ”⟩ = 1 ⟨“ S ”⟩ 0 = S
11 5 10 syl5ibrcom S V W = ⟨“ S ”⟩ W Word V W = 1 W 0 = S
12 eqs1 W Word V W = 1 W = ⟨“ W 0 ”⟩
13 s1eq W 0 = S ⟨“ W 0 ”⟩ = ⟨“ S ”⟩
14 13 eqeq2d W 0 = S W = ⟨“ W 0 ”⟩ W = ⟨“ S ”⟩
15 12 14 syl5ibcom W Word V W = 1 W 0 = S W = ⟨“ S ”⟩
16 15 3impia W Word V W = 1 W 0 = S W = ⟨“ S ”⟩
17 11 16 impbid1 S V W = ⟨“ S ”⟩ W Word V W = 1 W 0 = S