Metamath Proof Explorer


Theorem wrdl3s3

Description: A word of length 3 is a length 3 string. (Contributed by AV, 18-May-2021)

Ref Expression
Assertion wrdl3s3 W Word V W = 3 a V b V c V W = ⟨“ abc ”⟩

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 1 tpid1 0 0 1 2
3 fzo0to3tp 0 ..^ 3 = 0 1 2
4 2 3 eleqtrri 0 0 ..^ 3
5 oveq2 W = 3 0 ..^ W = 0 ..^ 3
6 4 5 eleqtrrid W = 3 0 0 ..^ W
7 wrdsymbcl W Word V 0 0 ..^ W W 0 V
8 6 7 sylan2 W Word V W = 3 W 0 V
9 1ex 1 V
10 9 tpid2 1 0 1 2
11 10 3 eleqtrri 1 0 ..^ 3
12 11 5 eleqtrrid W = 3 1 0 ..^ W
13 wrdsymbcl W Word V 1 0 ..^ W W 1 V
14 12 13 sylan2 W Word V W = 3 W 1 V
15 2ex 2 V
16 15 tpid3 2 0 1 2
17 16 3 eleqtrri 2 0 ..^ 3
18 17 5 eleqtrrid W = 3 2 0 ..^ W
19 wrdsymbcl W Word V 2 0 ..^ W W 2 V
20 18 19 sylan2 W Word V W = 3 W 2 V
21 simpr W Word V W = 3 W = 3
22 eqid W 0 = W 0
23 eqid W 1 = W 1
24 eqid W 2 = W 2
25 22 23 24 3pm3.2i W 0 = W 0 W 1 = W 1 W 2 = W 2
26 21 25 jctir W Word V W = 3 W = 3 W 0 = W 0 W 1 = W 1 W 2 = W 2
27 eqeq2 a = W 0 W 0 = a W 0 = W 0
28 27 3anbi1d a = W 0 W 0 = a W 1 = b W 2 = c W 0 = W 0 W 1 = b W 2 = c
29 28 anbi2d a = W 0 W = 3 W 0 = a W 1 = b W 2 = c W = 3 W 0 = W 0 W 1 = b W 2 = c
30 eqeq2 b = W 1 W 1 = b W 1 = W 1
31 30 3anbi2d b = W 1 W 0 = W 0 W 1 = b W 2 = c W 0 = W 0 W 1 = W 1 W 2 = c
32 31 anbi2d b = W 1 W = 3 W 0 = W 0 W 1 = b W 2 = c W = 3 W 0 = W 0 W 1 = W 1 W 2 = c
33 eqeq2 c = W 2 W 2 = c W 2 = W 2
34 33 3anbi3d c = W 2 W 0 = W 0 W 1 = W 1 W 2 = c W 0 = W 0 W 1 = W 1 W 2 = W 2
35 34 anbi2d c = W 2 W = 3 W 0 = W 0 W 1 = W 1 W 2 = c W = 3 W 0 = W 0 W 1 = W 1 W 2 = W 2
36 29 32 35 rspc3ev W 0 V W 1 V W 2 V W = 3 W 0 = W 0 W 1 = W 1 W 2 = W 2 a V b V c V W = 3 W 0 = a W 1 = b W 2 = c
37 8 14 20 26 36 syl31anc W Word V W = 3 a V b V c V W = 3 W 0 = a W 1 = b W 2 = c
38 df-3an a V b V c V a V b V c V
39 eqwrds3 W Word V a V b V c V W = ⟨“ abc ”⟩ W = 3 W 0 = a W 1 = b W 2 = c
40 39 ex W Word V a V b V c V W = ⟨“ abc ”⟩ W = 3 W 0 = a W 1 = b W 2 = c
41 38 40 syl5bir W Word V a V b V c V W = ⟨“ abc ”⟩ W = 3 W 0 = a W 1 = b W 2 = c
42 41 expd W Word V a V b V c V W = ⟨“ abc ”⟩ W = 3 W 0 = a W 1 = b W 2 = c
43 42 adantr W Word V W = 3 a V b V c V W = ⟨“ abc ”⟩ W = 3 W 0 = a W 1 = b W 2 = c
44 43 imp31 W Word V W = 3 a V b V c V W = ⟨“ abc ”⟩ W = 3 W 0 = a W 1 = b W 2 = c
45 44 rexbidva W Word V W = 3 a V b V c V W = ⟨“ abc ”⟩ c V W = 3 W 0 = a W 1 = b W 2 = c
46 45 2rexbidva W Word V W = 3 a V b V c V W = ⟨“ abc ”⟩ a V b V c V W = 3 W 0 = a W 1 = b W 2 = c
47 37 46 mpbird W Word V W = 3 a V b V c V W = ⟨“ abc ”⟩
48 s3cl a V b V c V ⟨“ abc ”⟩ Word V
49 48 ad4ant123 a V b V c V W = ⟨“ abc ”⟩ ⟨“ abc ”⟩ Word V
50 s3len ⟨“ abc ”⟩ = 3
51 49 50 jctir a V b V c V W = ⟨“ abc ”⟩ ⟨“ abc ”⟩ Word V ⟨“ abc ”⟩ = 3
52 eleq1 W = ⟨“ abc ”⟩ W Word V ⟨“ abc ”⟩ Word V
53 fveqeq2 W = ⟨“ abc ”⟩ W = 3 ⟨“ abc ”⟩ = 3
54 52 53 anbi12d W = ⟨“ abc ”⟩ W Word V W = 3 ⟨“ abc ”⟩ Word V ⟨“ abc ”⟩ = 3
55 54 adantl a V b V c V W = ⟨“ abc ”⟩ W Word V W = 3 ⟨“ abc ”⟩ Word V ⟨“ abc ”⟩ = 3
56 51 55 mpbird a V b V c V W = ⟨“ abc ”⟩ W Word V W = 3
57 56 rexlimdva2 a V b V c V W = ⟨“ abc ”⟩ W Word V W = 3
58 57 rexlimivv a V b V c V W = ⟨“ abc ”⟩ W Word V W = 3
59 47 58 impbii W Word V W = 3 a V b V c V W = ⟨“ abc ”⟩