Metamath Proof Explorer


Theorem wrdlen2i

Description: Implications of a word of length two. (Contributed by AV, 27-Jul-2018) (Proof shortened by AV, 14-Oct-2018)

Ref Expression
Assertion wrdlen2i S V T V W = 0 S 1 T W Word V W = 2 W 0 = S W 1 = T

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 1ex 1 V
3 1 2 pm3.2i 0 V 1 V
4 simpl S V T V W = 0 S 1 T S V T V
5 0ne1 0 1
6 5 a1i S V T V W = 0 S 1 T 0 1
7 fprg 0 V 1 V S V T V 0 1 0 S 1 T : 0 1 S T
8 3 4 6 7 mp3an2i S V T V W = 0 S 1 T 0 S 1 T : 0 1 S T
9 fzo0to2pr 0 ..^ 2 = 0 1
10 9 eqcomi 0 1 = 0 ..^ 2
11 10 a1i S V T V 0 1 = 0 ..^ 2
12 11 feq2d S V T V 0 S 1 T : 0 1 S T 0 S 1 T : 0 ..^ 2 S T
13 12 biimpa S V T V 0 S 1 T : 0 1 S T 0 S 1 T : 0 ..^ 2 S T
14 prssi S V T V S T V
15 14 adantr S V T V 0 S 1 T : 0 1 S T S T V
16 13 15 fssd S V T V 0 S 1 T : 0 1 S T 0 S 1 T : 0 ..^ 2 V
17 16 ex S V T V 0 S 1 T : 0 1 S T 0 S 1 T : 0 ..^ 2 V
18 17 adantr S V T V W = 0 S 1 T 0 S 1 T : 0 1 S T 0 S 1 T : 0 ..^ 2 V
19 18 impcom 0 S 1 T : 0 1 S T S V T V W = 0 S 1 T 0 S 1 T : 0 ..^ 2 V
20 feq1 W = 0 S 1 T W : 0 ..^ 2 V 0 S 1 T : 0 ..^ 2 V
21 20 adantl S V T V W = 0 S 1 T W : 0 ..^ 2 V 0 S 1 T : 0 ..^ 2 V
22 21 adantl 0 S 1 T : 0 1 S T S V T V W = 0 S 1 T W : 0 ..^ 2 V 0 S 1 T : 0 ..^ 2 V
23 19 22 mpbird 0 S 1 T : 0 1 S T S V T V W = 0 S 1 T W : 0 ..^ 2 V
24 8 23 mpancom S V T V W = 0 S 1 T W : 0 ..^ 2 V
25 iswrdi W : 0 ..^ 2 V W Word V
26 24 25 syl S V T V W = 0 S 1 T W Word V
27 fveq2 W = 0 S 1 T W = 0 S 1 T
28 5 neii ¬ 0 = 1
29 simpl S V T V S V
30 opth1g 0 V S V 0 S = 1 T 0 = 1
31 1 29 30 sylancr S V T V 0 S = 1 T 0 = 1
32 28 31 mtoi S V T V ¬ 0 S = 1 T
33 32 neqned S V T V 0 S 1 T
34 opex 0 S V
35 opex 1 T V
36 34 35 pm3.2i 0 S V 1 T V
37 hashprg 0 S V 1 T V 0 S 1 T 0 S 1 T = 2
38 36 37 mp1i S V T V 0 S 1 T 0 S 1 T = 2
39 33 38 mpbid S V T V 0 S 1 T = 2
40 27 39 sylan9eqr S V T V W = 0 S 1 T W = 2
41 5 a1i S V T V 0 1
42 fvpr1g 0 V S V 0 1 0 S 1 T 0 = S
43 1 29 41 42 mp3an2i S V T V 0 S 1 T 0 = S
44 simpr S V T V T V
45 fvpr2g 1 V T V 0 1 0 S 1 T 1 = T
46 2 44 41 45 mp3an2i S V T V 0 S 1 T 1 = T
47 43 46 jca S V T V 0 S 1 T 0 = S 0 S 1 T 1 = T
48 47 adantr S V T V W = 0 S 1 T 0 S 1 T 0 = S 0 S 1 T 1 = T
49 fveq1 W = 0 S 1 T W 0 = 0 S 1 T 0
50 49 eqeq1d W = 0 S 1 T W 0 = S 0 S 1 T 0 = S
51 fveq1 W = 0 S 1 T W 1 = 0 S 1 T 1
52 51 eqeq1d W = 0 S 1 T W 1 = T 0 S 1 T 1 = T
53 50 52 anbi12d W = 0 S 1 T W 0 = S W 1 = T 0 S 1 T 0 = S 0 S 1 T 1 = T
54 53 adantl S V T V W = 0 S 1 T W 0 = S W 1 = T 0 S 1 T 0 = S 0 S 1 T 1 = T
55 48 54 mpbird S V T V W = 0 S 1 T W 0 = S W 1 = T
56 26 40 55 jca31 S V T V W = 0 S 1 T W Word V W = 2 W 0 = S W 1 = T
57 56 ex S V T V W = 0 S 1 T W Word V W = 2 W 0 = S W 1 = T