Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
wrdlen2s2
Next ⟩
wrdl2exs2
Metamath Proof Explorer
Ascii
Unicode
Theorem
wrdlen2s2
Description:
A word of length two as doubleton word.
(Contributed by
AV
, 20-Oct-2018)
Ref
Expression
Assertion
wrdlen2s2
⊢
W
∈
Word
V
∧
W
=
2
→
W
=
〈“
W
⁡
0
W
⁡
1
”〉
Proof
Step
Hyp
Ref
Expression
1
wrd2pr2op
⊢
W
∈
Word
V
∧
W
=
2
→
W
=
0
W
⁡
0
1
W
⁡
1
2
fvex
⊢
W
⁡
0
∈
V
3
fvex
⊢
W
⁡
1
∈
V
4
s2prop
⊢
W
⁡
0
∈
V
∧
W
⁡
1
∈
V
→
〈“
W
⁡
0
W
⁡
1
”〉
=
0
W
⁡
0
1
W
⁡
1
5
4
eqcomd
⊢
W
⁡
0
∈
V
∧
W
⁡
1
∈
V
→
0
W
⁡
0
1
W
⁡
1
=
〈“
W
⁡
0
W
⁡
1
”〉
6
2
3
5
mp2an
⊢
0
W
⁡
0
1
W
⁡
1
=
〈“
W
⁡
0
W
⁡
1
”〉
7
1
6
eqtrdi
⊢
W
∈
Word
V
∧
W
=
2
→
W
=
〈“
W
⁡
0
W
⁡
1
”〉