Metamath Proof Explorer


Theorem wrdlen3s3

Description: A word of length three as length 3 string. (Contributed by AV, 26-Jan-2021)

Ref Expression
Assertion wrdlen3s3 W Word V W = 3 W = ⟨“ W 0 W 1 W 2 ”⟩

Proof

Step Hyp Ref Expression
1 wrd3tpop W Word V W = 3 W = 0 W 0 1 W 1 2 W 2
2 fvex W 0 V
3 fvex W 1 V
4 fvex W 2 V
5 s3tpop W 0 V W 1 V W 2 V ⟨“ W 0 W 1 W 2 ”⟩ = 0 W 0 1 W 1 2 W 2
6 5 eqcomd W 0 V W 1 V W 2 V 0 W 0 1 W 1 2 W 2 = ⟨“ W 0 W 1 W 2 ”⟩
7 2 3 4 6 mp3an 0 W 0 1 W 1 2 W 2 = ⟨“ W 0 W 1 W 2 ”⟩
8 1 7 eqtrdi W Word V W = 3 W = ⟨“ W 0 W 1 W 2 ”⟩