Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
wrdlen3s3
Next ⟩
repsw2
Metamath Proof Explorer
Ascii
Unicode
Theorem
wrdlen3s3
Description:
A word of length three as length 3 string.
(Contributed by
AV
, 26-Jan-2021)
Ref
Expression
Assertion
wrdlen3s3
⊢
W
∈
Word
V
∧
W
=
3
→
W
=
〈“
W
⁡
0
W
⁡
1
W
⁡
2
”〉
Proof
Step
Hyp
Ref
Expression
1
wrd3tpop
⊢
W
∈
Word
V
∧
W
=
3
→
W
=
0
W
⁡
0
1
W
⁡
1
2
W
⁡
2
2
fvex
⊢
W
⁡
0
∈
V
3
fvex
⊢
W
⁡
1
∈
V
4
fvex
⊢
W
⁡
2
∈
V
5
s3tpop
⊢
W
⁡
0
∈
V
∧
W
⁡
1
∈
V
∧
W
⁡
2
∈
V
→
〈“
W
⁡
0
W
⁡
1
W
⁡
2
”〉
=
0
W
⁡
0
1
W
⁡
1
2
W
⁡
2
6
5
eqcomd
⊢
W
⁡
0
∈
V
∧
W
⁡
1
∈
V
∧
W
⁡
2
∈
V
→
0
W
⁡
0
1
W
⁡
1
2
W
⁡
2
=
〈“
W
⁡
0
W
⁡
1
W
⁡
2
”〉
7
2
3
4
6
mp3an
⊢
0
W
⁡
0
1
W
⁡
1
2
W
⁡
2
=
〈“
W
⁡
0
W
⁡
1
W
⁡
2
”〉
8
1
7
eqtrdi
⊢
W
∈
Word
V
∧
W
=
3
→
W
=
〈“
W
⁡
0
W
⁡
1
W
⁡
2
”〉